
WES

Technical Report ITL-99-2
June 1999

US Army Corps
of Engineers
Waterways Experiment
Station

Performance Testing of CEFMS

by William A. Ward, Jr., University of South Alabama

Approved For Public Release; Distribution Is Unlimited

Prepared for Headquarters, U.S. Army Corps of Engineers

The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use
of such commercial products.

The findings of this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorized documents.

PRINTED ON RECYCLED PAPER

Technical Report ITL-99-2
June 1999

Performance Testing of CEFMS

by William A. Ward, Jr.

Faculty Court West 20
School of Computer and Information Sciences
University of South Alabama
Mobile, AL 36688

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

Under Contract No. DACA39-93-K-0016

Monitored by U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

Waterways Experiment Station Cataloging-in-Publication Data

Ward, William A.
Performance testing of CEFMS / by William A. Ward, Jr. ; prepared for U.S. Army Corps of Engineers ;

monitored by U.S. Army Engineer Waterways Experiment Station.
93 p. : ill. ; 28 cm. — (Technical report ; ITL-99-2)
Includes bibliographical references.
1. CEFMS (Computer program) — Testing. 2. United States — Army — Corps of Engineers — Finance.

3. United States — Army — Corps of Engineers — Accounting. I. United States. Army. Corps of
Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Information Technology
Laboratory (U.S. Army Engineer Waterways Experiment Station) IV. Title. V. Series: Technical report
(U.S. Army Engineer Waterways Experiment Station) ; ITL-99-2.
TA7 W34 no.ITL-99-2

iii

Contents

Preface . vi

1—Introduction . 1

The CEFMS Project. 1
Conventions Used in this Report. 2
Benchmarking Computer Systems. 3
Remote Terminal Emulation. 7

2—Test Workload Definition. 9

Obtaining Transaction Counts. 9
Producing Script Counts from Transaction Counts. 11
Producing Script Counts for Report Scripts. 12
Determining the Peaking Factor. 13

3—Mix Preparation. 16

Producing the Mix Table from Script Counts. 16
Producing the Preparatory Mix Table from the Mix Table 17
Producing Mix Command Files from Mix Tables. 18

4—Script Preparation. 20

PurePerformix/TTY . 20
Development of CEFMS Scripts . 24

5—Benchmark Test Results and Conclusions . 26

Summary of BT Methodology. 26
Results of Three Benchmark Tests . 27
Problems Encountered. 27
Future Work . 30

References . 34

Appendix A: Software Tools Developed for This Project. A1

prccertf.sql . A1
cpdir . A2
cpdir.awk . A2
mt2mc . A5
mt2mc.awk . A6

iv

mt2mt0 . A11
mt2mt0.awk . A12
pa2pf . A20
pa2pf.awk . A21
sc2mt . A24
sc2mt.awk . A25
tc2sc . A29
tc2sc.awk . A30
wt2pf . A35
wt2pf.awk . A36

Appendix B: Included Files. B1

common_decl.h. B1
common_gvread.h . B2
common_input.h. B2
common_login.h . B3
common_logout.h . B4
common_rte.h . B4
common_start.h. B5
common_suspend.h. B5
common_tms.h . B5
vt220.h . B6

Appendix C: System Configurations. C1

RTE Computer System: wescs2.wes.army.mil. C1
SUT Computer System: cpc25.usace.army.mil. C2
SUT Disks and Database Layout. C2

SF 298

List of Figures

Figure 1. Simple example of a script . 8

Figure 2. SQL script to count PR&C certifications. 11

Figure 3. Fragment of a pacct file after processing by acctcom 13

Figure 4. Fragment of a wtmpx file after processing by last 14

Figure 5. Sample mix table file used by mix . 17

Figure 6. Sample preparatory mix table file used by mix 19

Figure 7. Sample keystroke file produced by capture 21

Figure 8. Sample script produced by compose . 22

Figure 9. Active users during BT 1. 28

v

List of Tables

Table 1. Script Names and Activities. 10

Table 2. Scenario Statistics for BT 1. 28

Table 3. Interactive Response Time Statistics for BT 1. 29

Table 4. Scenario Statistics for BT 2. 30

Table 5. Interactive Response Time Statistics for BT 2. 31

Table 6. Scenario Statistics for BT 3. 32

Table 7. Interactive Response Time Statistics for BT 3. 33

Table C1. Arrangement of U4CEFMP1 Database Files. C3

Table C2. Description of Mirrored Drives . C3

vi

Preface

The production of this report was sponsored by the Corps of Engineers
Automation Plan (CEAP) Program Office and funded through the U.S. Army
Engineer Waterways Experiment Station (WES) under Contract No. DACA39-
93-K-0016 from 1 January 1995 to 30 June 1995. The contract was monitored
by Dr. Windell F. Ingram, Chief, Computer Science Division (CSD), Information
Technology Laboratory (ITL), WES. Dr. N. Radhakrishnan was Director, ITL.

Dr. William A. Ward, Jr., University of South Alabama, prepared this report.
Mr. Howard S. Gary, Computing and Communications Center, ITL;
Ms. Sherry L. Klein, Directorate of Resource Management, WES; and
Ms. Elaine H. Johnson and Mr. Wallace D. Pratt, CSD, provided technical
information and advice essential to the study. Mr. Gary also provided the
section on SUT Disks and Database Layout in Appendix C. Those actively
participating in the evluation effort were: Messrs. David Gamble, Jerry A.
Graham, Lew Harkins, Clyde Hill, and Otis N. James, CSD, and Dr. Ward.

At the time of publication of this report, COL Robin R. Cababa, EN, was
Acting Director of WES.

The contents of this report are not to be used for advertising, publication, or
promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.

 UNIX is a trademark of X/Open.1

Chapter 1 Introduction 1

1 Introduction

The CEFMS Project

The Corps of Engineers Financial Management System (CEFMS) is designed
to handle all types of financial data processing within the Corps, including pro-
cessing of time sheets, travel requests, purchase requests, and in-house labor
requests. It is intended to be an interactive system giving managers and principal
investigators immediate access to current account information formerly available
only in voluminous, and perhaps already dated, paper reports. Furthermore, it
incorporates state-of-the-art security mechanisms; in addition to the standard
password protection provided by UNIX, magnetically coded signature cards1

issued only to selected individuals must be used with CEFMS to actually author-
ize expenditures. Judged on the basis of features provided, CEFMS is in many
respects a truly modern FMS.

In spite of, or perhaps because of, its modern features, CEFMS places heavy
demands on the host hardware platforms (currently a variety of Sun
SPARCservers) and sometimes responds sluggishly to interactive requests. The
slowness of CEFMS experienced at several operational sites, including the
U.S. Army Engineer Waterways Experiment Station (WES) and the U.S. Army
Corps of Engineers Huntsville Division (HND), is not only a problem for those
sites, but is also an indicator that CEFMS performance could be a problem for
other sites as deployment proceeds. To cope with this slowness, WES has been
forced to allocate different time slots during the work day to different labora-
tories in order to reduce the demands on CEFMS. By all reasonable gauges of
performance of an on-line, interactive system, the poor performance experienced
to date and the means that must be employed to cope with that poor performance
are unacceptable.

This problem has not been ignored. The CEFMS development team worked
to improve CEFMS performance, and significant improvements were made dur-
ing the fourth quarter of 1994 and the first quarter of 1995. The Corps of Engi-
neers Automation Plan (CEAP) Program Manager assembled a team in the fall of
1994 to investigate how performance might be improved. That team made

 July 1997.1

 Reprinted with permission from sed & awk, 2 ed. © 1997 O’Reilly & Associates, Inc.2 nd

(Dougherty and Robbins 1997). For orders and information call 1-800-998-9938.

2
Chapter 1 Introduction

numerous recommendations for tuning both the program and the database struc-
ture; many of these recommendations will have been implemented by the time
this report is issued. At this writing, a special file system from Veritas is also1

being evaluated as a potential performance enhancer.

 Improving the performance of CEFMS by installing a more powerful com-
puter was also considered. However, the risk of either (a) purchasing a system
that was too small and obtaining little or no improvement in performance or
(b) purchasing a more powerful (and presumably more expensive) system when a
smaller system would have done the job was unacceptable. A reliable way to
predict the effects of hardware and software changes, and an effective way to
measure the effects after changes were made, had to be obtained.

Conventions Used in this Report 2

The following conventions are used in this report:

Bold is used for statements and functions, identifiers, and pro-
gram names.

Italic is used for file and directory names when they appear in
the body of a paragraph as well as for data types and to
emphasize new terms and concepts when they are intro-
duced. It is also used for titles of books and journals.

Constant Width is used in examples to show the contents of files or the
output from commands.

Constant Bold is used in examples to show command lines and options
that should be typed literally by the user.

Quotes are used to identify a code fragment in explanatory text.
System messages, signs, symbols, and quotations from
other sources are quoted as well.

$ is the Bourne Shell prompt.

% is the C Shell prompt.

[] surrounds optional elements in a description of program
syntax. (The brackets themselves should never be
typed.)

Chapter 1 Introduction 3

Benchmarking Computer Systems

Benchmarking may be defined as a means of estimating the performance of
systems by imposing one or more test workloads on them and then measuring
their performance (Jones 1975). This broad definition may be applied in many
contexts, but computers are the systems of particular interest here. Even with
this restriction there is considerable latitude for the application of benchmarking;
central processing units (CPUs), memory subsystems, input/output (I/O) subsys-
tems, graphics subsystems, disk subsystems, compilers, operating systems, entire
computer systems, multiprocessor computer systems, and local area networks all
may be, and have been, benchmarked. The factor which generally serves to dis-
criminate between benchmark techniques is not so much what is being tested, but
the method each technique uses to create a representative test.

There are several aspects to the concept of benchmark representativeness.
First, the test workload must be an accurate model of the projected actual work-
load. A hybrid workload consisting of a limited number of actual jobs may be
more effective in this respect than a synthetic workload (Ferrari 1972). Use of
programs still in the developmental stage may also be a relevant way to reflect
future processing requirements in a benchmark test (BT) (Dongarra, Martin, and
Worlton 1987). A second aspect of representativeness depends on the system
configured to run the test; it should match the proposed configuration to the
greatest extent possible. However, proposed systems with hundreds of attached
terminals or networked nodes may be impossible to duplicate. A third aspect of
this objective is the benchmarking methodology. If one is purchasing a large-
scale system to run a relational database management system which will support
a large number of users, then running one or two test jobs, or even a few actual
programs, would scarcely approximate the actual operating environment. Sev-
eral example methodologies are presented in the following paragraphs in rough
order of representativeness. (Although lack of representativeness may reduce
the credibility of a BT's results, it does not necessarily imply lack of effective-
ness in measuring system performance.)

Among the least representative benchmarks is the synthetic job, described by
Kernighan and Hamilton (1973) as “a program which uses precisely specified
amounts of computing resources, but which does no ‘useful’ work.” Such jobs
may be constructed to replicate the CPU and I/O requirements of a real job with-
out regard to actual program features, or they may be constructed to represent a
typical program written in a high-level language. If this latter approach is used,
one first obtains the frequencies with which various language features occur.
Ideally, these should be dynamic frequencies taken from program execution
traces; when these are not available, static frequencies taken from source pro-
grams may be substituted. The frequencies so obtained are then used to con-
struct a program that exhibits the same frequencies of occurrence for all features
of interest. The program may accept an input parameter to vary its resource uti-
lization, or the program may be invoked within a loop to obtain a measurable
amount of work. The results may then be expressed in instructions per second or
program completions per second.

4
Chapter 1 Introduction

An early example of this technique is the Buchholz benchmark, based on a
master file/transaction file update and written in PL/I (Buchholz 1969). This
program was parameterized so as to adapt to varying given frequencies of com-
putation and I/O. A second example, and one of the most widely used synthetic
programs, is the Whetstone benchmark (Curnow and Wichman 1976), apparently
named after an Algol interpreter system (Randell and Russell 1960) which was
subsequently modified to produced both static and dynamic frequency counts of
instruction types from a number of real programs. The program itself was con-
structed using 11 modules containing loops whose iteration counts were treated
as variables; the values of these variables were then selected to allow the fre-
quencies in the synthetic program to match the observed frequencies. A third
example is the Dhrystone benchmark (Weicker 1984, 1988). Whereas Whet-
stone primarily measured floating-point performance, Dhrystone was charac-
terized by its author as a “systems programming benchmark.” To determine the
frequency of individual high-level language constructs, 16 different data collec-
tions drawn from several languages were used. The constructs considered
include types of operations, numbers of parameters, types of operands, operand
locality, statement types, types of loops, and types of assignment statements.
Although many synthetic benchmarks have been carefully constructed, they still
have several shortcomings, as noted below.

a. Even if a synthetic program is perfectly representative in terms of lan-
guage features and resource consumption, the workload it models is gen-
eric and will not necessarily match the workload on a given system.

b. Care must be taken in the construction of synthetic programs so that
sophisticated compilers will not optimize all of the work out of the pro-
gram. On the other hand, a program designed to completely defeat com-
piler optimizations is not representative.

c. Synthetic programs tend to be shorter than actual programs, and, unless
multiple instances of the program are submitted simultaneously, it is
quite possible they will become cache-resident and the results reported
will be too optimistic. Recently announced microprocessor-based sys-
tems which include a 16 Kbyte on-chip data cache, a 20 Kbyte on-chip
instruction cache, and a 1 Mbyte off-chip cache illustrate that this is a
very real possibility.

A second methodology is the use of program kernels. To apply this techni-
que, heavily-used programs from the actual workload are analyzed to determine
which portions of the code use most of the computing time. These resource-
intensive portions, or kernels, are extracted and combined into a single bench-
mark program. Examples include the NAS Kernel Benchmark Program (Bailey
and Barton 1985), to be described in the following paragraphs, and the Liver-
more Fortran Kernels, commonly referred to as the Livermore Loops (McMahon
1986). Although the kernel approach appears to be somewhat more representa-
tive than the use of synthetic programs, there are several problems with its
application:

Chapter 1 Introduction 5

a. Many kernel programs have been developed by research laboratories to
model their vector supercomputer workloads. Unless the given workload
happens to match the one upon which the benchmark was based, repre-
sentativeness is lost.

b. Many kernels inherently favor a particular architecture. For example, if a
benchmark is designed to measure vector supercomputer performance,
then the source code modifications required to obtain enhanced perfor-
mance on a large-scale multiprocessor might be extensive.

c. Care must be taken to preserve benchmark uniformity. According to
Bailey and Barton (1985) “Some vendors have claimed amazingly high
performance rates for their computers, which, upon closer analysis, have
been achieved only by massive recoding of the test kernels and by the
usage of assembly code.” If modifications of this sort are performed,
they should be clearly documented.

d. Kernel benchmarks generally measure processor/compiler performance;
overall system performance is not addressed.

A third benchmarking methodology involves the use of one or more actual
programs. Each member of the test suite is executed in a serial fashion (as
opposed to a job stream), and a separate execution time for each is obtained. An
average of these times may then serve as the performance rating for the system
(other scores are possible). Several currently popular benchmarks use this meth-
odology, including the PERFECT (Cybenko 1990,Grassl and Schwarzmeier
1990, Saavedra-Barrera 1990) and SLALOM (Gustafson et al. 1990) bench-
marks. A third example is the SPEC benchmark suite (Saavedra-Barrera 1990).

The Standard Performance Evaluation Corporation (SPEC) is a nonprofit
corporation formed to “establish, maintain and endorse a standardized set of
relevant benchmarks that can be applied to the newest generation of high-
performance computers” (quoted from SPEC's bylaws) (SPEC 1997). Although
SPEC maintains several benchmarks, the two of interest here are the CINT95
and the CFP95 test suites. CINT95 contains eight C programs which perform
integer computations; these programs include a Motorola 88000 chip simulator
and a Lisp interpreter. CFP95 contains ten Fortran 77 programs which perform
floating-point computations; these programs include a solver for Navier Stokes
equations and simulation programs in quantum chemistry and physics. Each pro-
gram is compiled in two modes, conservative optimization and aggressive opti-
mization. Then, for each program/mode combination, a performance ratio of the
system under test (SUT) execution time to the known Sun SPARCstation
10/40 80 execution time is calculated for each of the programs. Finally, geome-
tric means of the conservative CINT95 ratios, the conservative CFP95 ratios, the
agressive CINT95 ratios, and the agressive CFP95 ratios are computed. These
four numbers, termed SPECint_base95, SPECfp_base95, SPECint95, and
SPECfp95, respectively, are used to characterize the performance of the SUT/
compiler being evaluated. SPEC periodically changes the programs used (the
prior test suite was constructed in 1992) and also maintains a list of these four

6
Chapter 1 Introduction

values for various machines for public inspection on its World-Wide Web page
(SPEC 1997). Although this approach is quite useful for relative comparisons of
general computing capability of two systems, the use of actual programs in this
fashion suffers from many of the same problems as the kernel approach, includ-
ing lack of representativeness due to a fixed workload, possible lack of uniform-
ity due to vendor modifications, and failure to measure overall system
performance due to the way the workload is imposed on the system.

A fourth methodology requires the construction of a stream of jobs so that
system throughput may be measured. Three types of drive workloads are pos-
sible: actual, artificial, and hybrid (Ferrari 1972). When the actual workload is
used, measurements of system response must be taken to cover most, if not all,
of the significant operating periods (e.g., end of the day, week, month, fiscal
year, semester). Thus the measurement period is long, but little benchmark prep-
aration is required. However, repeating a workload test so observed on a pro-
duction system is impossible. Furthermore, when the purpose of benchmarking
is for system selection, imposition of the actual workload on a system not yet
installed is difficult.

Artificial workloads are composed of synthetic jobs and kernel programs.
Such workloads typically involve shorter measurement periods, but more bench-
mark preparation. One example proposes the use of a synthetic stream (Wood
and Forman 1971); this approach is useful when actual jobs are not available
(e.g., when security and confidentiality are issues). Here, repeated instances of
the Buchholz synthetic benchmark program noted above were used to build the
stream. Parameter values controlling the amount of computation and I/O were
chosen to correspond to actual jobs. Comparison with the use of an actual job
stream verified the feasibility of this approach. An elaboration on the use of this
idea involves the use of accounting data to provide job resource utilization char-
acteristics (Sreenivasan and Kleinman 1974). In this case, the mix of jobs was
chosen through a probability distribution technique with a limit on the total BT
time. A second enhancement to this technique has also been implemented. It
involves the automatic generation of a complete synthetic job, including job con-
trol statements, from input which specifies job resource utilization (Kernighan
and Hamilton 1973).

In an attempt to improve representativeness, a hybrid workload, consisting of
carefully selected actual jobs, may be used in place of the synthetic stream dis-
cussed above (Ferrari 1972). Here, the representativeness of the actual workload
is preserved through the use of real jobs, while the shorter measurement period
used in the artificial workload is possible because a job stream of similar size is
used. Furthermore, benchmark preparation time is reduced because synthetic
programs or kernels need not be prepared.

After the test workload has been constructed, another aspect to be considered
is the method by which the workload is imposed on the SUT. One technique
uses a program resident on the SUT to periodically submit jobs to the system;
however, the presence of this additional program on the system biases the
results. A better technique imposes the test workload on the SUT from an

Chapter 1 Introduction 7

external source. If the test workload involves a large number of interactive
users, then actual configuration of the requisite number of terminals is not pos-
sible. In such circumstances, the terminals may be emulated and their input sup-
plied by an external driver computer. This approach, to be discussed in the
following section, is probably the most representative of all benchmarking
methodologies.

Remote Terminal Emulation

According to the Federal Computer Performance Evaluation and Simulation
Center (1979):

Remote terminal emulation is one benchmarking technique for
conducting tests of teleprocessing computer systems and services
when it is impractical to configure for a test the total planned net-
work of computers, teleprocessing devices, and data communica-
tion facilities. Remote terminal emulation uses an external driver
computer and computer programs to imitate the teleprocessing
devices to be supported by, and to impose the workload demands
on, the actual computer system or service being tested (hereafter
referred to as the System Under Test (SUT)). A remote terminal
emulator (RTE) is a specific hardware and software implementa-
tion of this driver system. During acquisitions, each vendor pro-
vides and operates the RTE used for benchmarking that vendor's
system. While any BT can be expensive, a BT using remote ter-
minal emulation is usually costly and complex and can be technic-
ally invalid if improperly designed or conducted.

However, if the RTE is correctly configured, the SUT cannot distinguish
whether the workload is imposed by an actual or an emulated population of
remote terminals, and, if the workload is appropriately constructed, accurate sys-
tem sizing is possible. It is important to realize that the terminal emulation in the
sense discussed here is different from terminal emulation programs provided on
personal computers (PCs). An RTE substitutes for a population of terminal ses-
sions which could, as far as the SUT is concerned, be originating from direct-
attached terminals or emulation programs on network-attached PCs.

A critical component of an RTE is a monitor that records in a log file every
data transmission between the RTE and SUT along with a time-stamp indicating
when the data was received by the RTE. After the test, this log file is summar-
ized to produce various performance measures for the SUT (e.g., batch turn-
around time and interactive response time). A complete description of the use
and specifications of remote terminal emulation is given in the GSA handbook
Use and Specifications of Remote Terminal Emulation in ADP System
Acquisitions (FCPESC 1979). A vendor-independent portable RTE has been
implemented (Adams, Currie, and Gilmour 1978), while a more recent, UNIX-
based emulator which can communicate with the SUT over TCP/IP networks as

8
Chapter 1 Introduction

 F77 -0 -time -o testprog main.f sub1.f sub2.f
 testprog < input.dat > ouput.dat
 grep answer output.dat

Figure 1. Simple example of a script

well as through asynchronous lines is available commercially (Pure Software
1996).

An RTE test workload is described using scenarios, sequences of one or more
computing activities described in a vendor-independent fashion. The character-
istics of the scenarios (e.g., batch or interactive, business or scientific, compile
or execute) and the number of times each is repeated during the BT are collec-
tively referred to as the benchmark mix. These generic scenarios are imple-
mented in a particular computing environment using system-specific scripts
written in the vendor's operating system control language, in a high-level pro-
gramming language, or in a combination of both. For example, if an interactive
scenario specifies the compilation and execution of a FORTRAN program and
then prints all output lines containing “answer,” then the corresponding script
file on a UNIX system could contain the commands shown in Figure 1.

Chapter 2 Test Workload Definition 9

2 Test Workload Definition

Construction of a representative test workload was crucial to the credibility of
these BTs. The first important decision made regarding this workload involved
deciding what “representative” meant. Because the poor performance experi-
enced by CEFMS users occurred during periods of high system utilization, it
seemed appropriate to test worst-case performance. Accordingly, it was decided
that each BT should represent the workload encountered during the worst 2-hr
period of the worst processing day of the year. The following sections discuss
how that peak workload was constructed.

Obtaining Transaction Counts

CEFMS user support personnel grouped CEFMS user tasks into functional
areas and then identified specific activities within each area. Each activity was
given an eight-character mnemonic name; the first three characters specified the
functional area, and the remaining characters specified the activity. Table 1
gives the final list of activities represented in the test.

Each activity should have had a corresponding script in the BT. However,
some activities, or some aspects of activities, proved difficult or impossible to
implement using remote terminal emulation. The electronic signature verifica-
tion (ESV) mechanism of CEFMS is implemented on a separate system from the
CEFMS SUT. Capturing and emulating the ESV process with the given RTE
tools proved to be impossible, so ESV was turned off during the test. Other can-
didate activities which required interaction with a system separate from the SUT
were omitted from the test for the same reason; specifically, these were technical
approval of a purchase request and commitment (PR&C) and logistics approval
of a PR&C. Although this reduced the representativeness of the tests, much of
the resource utilization for these activities is on systems external to the CEFMS
production system. Therefore it is believed that the impact of their omission is
not significant.

After specifying the candidate list of activities, the next step was to determine
the frequency with which each was performed. When an activity modifies one
or more database tables, those changes are logged by the database software.
Because each activity modifies different tables, it is possible to examine the logs

10
Chapter 2 Test Workload Definition

Table 1
Script Names and Activities

Script Name Activity Description 1

coraccpt accept a customer order
corcreat create a customer order
corapprv approve a customer order
corcertf certify a customer order

cvocreat create a collection voucher
cvocertf certify a collection voucher

labcreat create a labor PR&C
labctran labor cost transfer

prccreat create a PR&C
prcapprv approve a PR&C
prccertf certify a PR&C
prccreob create an obligation for a PR&C
prcappob approve an obligation for a PR&C
prccrein create an invoice for a PR&C

repa3953 run a DoA 3953 report
repa4445 run a DoA 4445 report
repcertl run a certlabor report
repcolds run a coldsbrg report
repd1556 run a DoD 1556 report
repmscdb run a misc. disbursement report
repsdipr run a ? report
reptmatt run a time & attendance report
reptrvdb run a travel disbursement report
repvstat run a Visa status report

torcreat create travel orders
torreque request travel orders
torapprv approve travel orders
torauthn authenticate travel orders
torcrevo create a travel voucher
torappvo approve a travel voucher

trncreat create a training PR&C

viscreat create a Visa PR&C
visapprv approve a Visa PR&C

 PR&C = purchase request and commitment.1

and determine how many times that activity was performed. The logs are stored
in the database so an SQL script must be written to make the examination. An
example of such a script is provided in Appendix A, and its output is presented
in Figure 2. As shown in the figure, the output of each SQL script is a total by
day of the number of times each activity was done; these are called transaction
counts. The transaction count data are placed in separate files by activity. The
names of these files are ultimately used as script names; a Bourne shell script,
cpdir , was written to alias these filenames to the selected script names. This
script is listed in Appendix A.

Chapter 2 Test Workload Definition 11

 set pagesize 60
 set echo off
 set term off
 set feedback off
 set linesize 80
 ttitle ‘COUNT BY DAY OF THE PRAC_CERT.LST DURING TEST PERIOD’
 column trunc(a.cert_date) heading ‘DATE’ format a10
 column count(b.prac_line_no) heading ‘COUNT’ format 999999
 spool prac_cert.lst
 select trunc(a.cert_date), count(b.prac_line_no)
 from pr_amend a, pr_line-item b
 where a.cert_date is not null
 and b.certified_us_amt is not null
 and trunc(cert_date) between ‘01-SEP-95' and ‘30-SEP-95'
 and a.prac_no = b.prac_no
 group by trunc(a.cert_date)
 /
 spool off
 exit;

Figure 2. SQL script to count PR&C certifications

However, there is a significant problem with this approach. Activities that do
not modify the database, such as queries and reports, will not be detected. In the
case of queries, not only is the total number unknown, but also the fields being
queried and, therefore, the relative field query frequency. Because of these
issues, queries were not represented in the BT. The approach used to determine
the frequency of reports is different from other activities and will be discussed in
a subsequent section.

Producing Script Counts from Transaction Counts

As stated earlier, the raw data available for workload definition was in the
form of files, one per activity, containing transaction counts. Each line in one of
these files contained a date and a count. The data covered 1-30 September 1995.
Given these data as input, the objective was to produce a list in which each line
contained a script name followed by a script count. The script names were the
same as the activity names; the implementation of each activity as an executable
script is discussed in a later section. The script count specified how many times
each script would be executed during the BT. The script count represents the
number of times the corresponding activity would be performed during the worst
2-hr period of the worst day of the year.

The problem immediately encountered was to define worst day. The easiest
approach would have been to select the day from the raw data with the greatest
total number of transactions. However, on that day some activities were not per-
formed at all while others were performed an unusually large number of times.
While such a day may be termed worst, a BT with script counts based on that
day's data would not be very representative. Another possibility would be to
select the maximum count for each individual activity to construct a hypothetical

12
Chapter 2 Test Workload Definition

worst day. It is highly improbable, however, that the maxima for each activity
would occur on the same day, so this approach overestimates the script counts.

The method finally adopted was statistical in nature. An average number of
transactions per day and a standard deviation were calculated for each activity;
weekend days and holidays (in this case, Labor Day 1995) were excluded from
the calculation. A worst day was then defined as a day for which the transaction
counts for each activity were one standard deviation (1SD) above the mean.
(Interestingly, the total transaction count by this method was surprisingly close
to that of the day with the greatest total number of transactions.) These 1SD
transaction counts were then divided by 24 (hours) and multiplied by 2 (hours) to
give a set of script counts which represented the number of transactions per-
formed in an average 2-hr period on the worst day of the year. To obtain a BT
workload representing the worst 2-hr period on the worst day of the year, these
script counts were then multiplied by a peaking factor, the calculation of which
is discussed in a subsequent section.

Some final adjustments had to be made to make the script counts consistent
with the way activities were actually performed. For example, the transaction
counts for PR&Cs were actually counts of line items. A tally of the PR&C docu-
ments revealed that, on the average, a CEFMS user enters 5.22 line items per
PR&C. To emulate this situation, the prccreat script was designed to enter
5 line items, and the script count for prccreat was divided by 5 (a scale factor of
0.2). Similar compensations were implemented for other PR&C-related scripts.
A more representative approach would have been to design the script to enter a
variable number of line items and force the average line item count to equal 5.22.
However, since considerable time would have been required to implement this
approach, this compromise seemed justified. A similar approach was used to
adjust the script counts for labcreat scripts to more accurately model the process
of creating labor PR&Cs.

A Bourne shell script, tc2sc, was written to convert transaction counts to
script counts; it has options to allow the use of peaking factors, the use of per
activity scale factors as discussed above, and the exclusion of specific days from
the computation, as discussed above. This script is listed in Appendix A.

Producing Script Counts for Report Scripts

As noted earlier, because reports do not modify the database, there are no
transactions to log, and therefore no transaction counts. Fortunately, however,
the reports themselves are directed to files prior to printing; these report files are
given mnemonic names which indicate the type of report. UNIX gives every file
a creation/modification time stamp and CEFMS retains a report file from several
days to several months, depending on the user's preference. Using the UNIX
command ls -l , it is possible to extract information on the type, creation date,
and size of various reports which is reliable for the past several days. Unfor-
unately, the availability of information this detailed revealed another problem:

Chapter 2 Test Workload Definition 13

mailx u4rmsslk pts/6 19:02:48 19:02:48 0.07 0.07 1369.14
sh u4rmsslk pts/6 19:02:48 19:02:48 0.12 0.05 1620.80
#sendmail u4rmsslk pts/6 19:02:48 19:02:48 0.18 0.17 2165.65
#mail.loc u4rmsslk ? 19:02:48 19:02:48 0.09 0.08 1591.00
#sendmail u4rmsslk pts/6 19:02:48 19:02:48 0.16 0.06 2242.67
mailx u4rmsslk pts/6 19:03:17 19:03:17 0.08 0.08 1155.00
sh u4rmsslk pts/6 19:03:17 19:03:17 0.12 0.04 1578.00
#sendmail u4rmsslk pts/6 19:03:17 19:03:17 0.19 0.19 2091.37
#mail.loc u4rmsslk ? 19:03:18 19:03:18 0.11 0.10 1760.00
#sendmail u4rmsslk pts/6 19:03:18 19:03:18 0.18 0.07 2187.43
mailx u4gvbame ? 19:03:27 19:03:27 0.07 0.07 1284.57
sh u4gvbame ? 19:03:27 19:03:27 0.13 0.05 3318.40
#sendmail u4gvbame ? 19:03:27 19:03:27 0.18 0.17 2095.53
#mail.loc u4gvbame ? 19:03:27 19:03:27 0.11 0.09 1522.67
#sendmail u4gvbame ? 19:03:27 19:03:27 0.18 0.07 2197.71
mailx u4rmsslk pts/6 19:03:38 19:03:38 0.08 0.08 1213.00
sh u4rmsslk pts/6 19:03:37 19:03:37 0.12 0.04 1602.00
#sendmail u4rmsslk pts/6 19:03:38 19:03:38 0.18 0.18 2079.11
#mail.loc u4rmsslk ? 19:03:38 19:03:38 0.10 0.09 1639.11
#sendmail u4rmsslk pts/6 19:03:38 19:03:38 0.17 0.06 2293.33

Figure 3. Fragment of a pacct file after processing by acctcom

there are dozens of different types of reports, and capturing a terminal session
for each was not feasible. Instead, reports were categorized by size into small,
medium, and large, and the number in each category was tabulated. A few
reports representative of these categories were selected for inclusion in the BT.

Determining the Peaking Factor

After the raw transaction count, data were analyzed to produce the average
2-hr workload on the worst day; this workload had to be scaled by a peaking fac-
tor to reflect the worst 2-hr period on that day. Obviously, the peaking factor
could not be determined from the transaction counts because daily data were too
coarse. Fortunately, Solaris (Sun's version of UNIX) has accounting procedures
which, when activated, automatically accumulate process-related data in
/var/adm/pacct which is accurate to the second, and user login-related data in
/var/adm/wtmpx which is accurate to the minute.

The pacct file is a binary data file which contains one record for each process
executed by the system. Each record contains, among other things, the process
name, the name of the user who initiated the process, the start time and end time
of the process (accurate to the second), the CPU seconds used by the process
(accurate to hundredths of a second), and the average amount of memory used by
the process. Further information on this file may be obtained by using man-s

4 acct or by inspecting the C library header file /usr/include/sys/acct.h. The
utility program acctcom is used to prepare a user-readable report from the pacct
file. The first several lines of one such report are shown in Figure 3.

14
Chapter 2 Test Workload Definition

u3plbmpk pts/73 moonkim.cecer.ar Thu Sep 26 16:20 - 16:22 (00:01)
u3ul9gws pts/52 moshage.cecer.ar Thu Sep 26 16:20 - 16:24 (00:03)
u4rmbgft pts/65 134.164.76.5 Thu Sep 26 16:20 - 16:27 (00:06)
u3plxkjc pts/46 castle.cecer.arm Thu Sep 26 16:20 still logged in
s0rmfbda pts/48 rmf22.hnd.usace. Thu Sep 26 16:19 - 16:21 (00:01)
u3plxkjc pts/46 castle.cecer.arm Thu Sep 26 16:19 - 16:20 (00:00)
u4svbalk pts/22 134.164.60.110 Thu Sep 26 16:19 - 18:12 (01:52)
u4cvbbjs pts/31 134.164.156.229 Thu Sep 26 16:19 - 18:46 (02:27)
u3plxeec pts/37 echris.cecer.arm Thu Sep 26 16:19 - 16:23 (00:04)
u4immewc pts/25 134.164.40.168 Thu Sep 26 16:19 - 16:21 (00:02)
u4imcljm pts/20 134.164.72.21 Thu Sep 26 16:19 - 16:25 (00:06)
u4eraeat pts/36 elmer.wes.army.m Thu Sep 26 16:17 - 16:21 (00:03)
u4gpqslf pts/24 134.164.180.161 Thu Sep 26 16:17 - 17:36 (01:18)
u4imcfms pts/10 cpc22 Thu Sep 26 16:17 still logged in
u4er9clk pts/25 134.164.100.217 Thu Sep 26 16:16 - 16:18 (00:02)
u3llnkar pts/35 reinbold.cecer.a Thu Sep 26 16:16 - 16:22 (00:05)
u3trwbwj ftp james.cecer.army Thu Sep 26 16:15 - 16:15 (00:00)
u3trwbwj pts/10 james.cecer.army Thu Sep 26 16:15 - 16:16 (00:01)
c21mxcdb pts/10 mrolm_12792.mro. Thu Sep 26 16:13 - 16:15 (00:01)
u3ctcdja pts/28 adamson.cecer.ar Thu Sep 26 16:13 - 16:33 (00:19)

Figure 4. Fragment of a wtmpx file after processing by last

From the pacct data it is possible to construct a (virtual) graph of CPU time
versus time of day. The area under some segment of this graph is the CPU time
consumed during that time interval. Dividing the area by the length of the time
interval gives the average CPU time used per unit time. On a uniprocessor this
average must be �1; on a multiprocessor it must be � the number of processors.
Equality is only possible at 100 percent processor utilization. Multiplying this
average by 2 hr, for example, gives the average CPU time used per 2-hr period.
From the pacct data, it is also possible to determine the 2-hr period with the
maximum consumption of CPU time. Dividing this maximum CPU time used
over a 2-hr period by the average CPU time used over a 2-hr period gives a
peaking factor.

Similarly, the wtmpx file contains one record for each user login. Each
record contains, among other things, the login name, the date, the login time
(accurate to the minute), and the logout time (accurate to the minute). Further
information on this file may be obtained by using man -s 4 utmp or by
inspecting the C library header file /usr/include/sys/utmp.h. The utility program
last is used to prepare a user-readable report from the wtmpx file. The first sev-
eral lines of one such report are shown in Figure 4. From these data it is possible
to construct a graph of number of users versus time of day and to calculate a
peaking factor in the same manner as described above. Changes in the number
of users very crudely approximate changes in the workload, so this peaking fac-
tor is not as useful for scaling an average workload to a worst-case workload.
Nevertheless, this number-of-users peaking factor serves two purposes: first, it
may provide supplemental evidence that the CPU time peaking factor is accurate,
and second, it may be used to determine the number of emulated users to use in
the BT.

Chapter 2 Test Workload Definition 15

Bourne shell scripts pa2pf and wt2pf were written to calculate peaking fac-
tors from pacct and wtmpx files, respectively. Both of these scripts are listed in
Appendix A. Care was taken to use grep to filter the input data to these scripts
so that only records for WES users (those with login names beginning with “u4”)
were used to calculate peaking factors for a WES BT.

16
Chapter 3 Mix Preparation

3 Mix Preparation

After all scripts have been successfully compiled and tested, and after the
user has determined the number of times each script will be executed during the
benchmark, the actual job mix must be prepared in a format acceptable to
PurePerformix/TTY. The command actually used to initiate a BT is mix. mix
requires two types of input; the first is a file, the mix table, that specifies which
scripts will be executed in the BT and in what order, and the second is the file of
mix commandsfP that initializes global variables and starts and resumes emulated
users. Both of these inputs will be discussed in further detail in this section.

Producing the Mix Table from Script Counts

A PurePerformix/TTY mix table lists the emulated users along with the
names of the scripts that each emulated user must perform during the test. A
single emulated user may execute scripts which login under different UNIX user-
names. The names of emulated users are known only to the RTE while the user-
names are significant only to UNIX. A fragment of a mix table used in these
tests is shown in Figure 5. Each line identifies a script to be executed during the
test. The first field of each line is the name of an emulated user who will run the
script, or a “+” to indicate that the previous emulated user should be reused. The
second field is the script name; it must be the name of an executable file on the
UNIX search path. The third field specifies the communications port with the
SUT. Here, telnet , which indicates the mode of comunication (as opposed to a
direct terminal line), is followed by the host Internet Protocol (IP) address or
symbolic host name of the SUT. The name of the log file is the fourth field.
Following fields contain arguments significant to the creator of the script. For
these tests, the fifth field is the UNIX username, while the sixth and seventh
fields are the script's input and output files, respectively.

The production of the mix table from the script counts is governed by several
requirements. First, the number of emulated users in the mix table, which equals
the number of users actually signed on to the SUT, should represent actual
worst-case CEFMS usage. This worst-case number of users is obtained from the
peaking factor calculation based on the wtmpx file of user login times discussed
previously. Note that specification of the number of users (from the peaking
factor calculation) and the number of scripts (from the script counts) determines

Chapter 3 Mix Preparation 17

u0019, cvocertf telnet:cpc25 cvocertf0010 u4rmsddw cvocertf0010
+ prccreat telnet:cpc25 prccreat0015 u4imcbjc prccreat0015
+ prccreob telnet:cpc25 prccreob0023 u4lmscns prccreob0023
+ prccrerr telnet:cpc25 prccrerr0004 u4imbepg prccrerr0004
+ visapprv telnet:cpc25 visapprv0011 u4gsrjsh visapprv0011
+ torauthn telnet:cpc25 torauthn0009 u4rmfvlr torauthn0009
+ prccreob telnet:cpc25 prccreob0024 u4cvbdaw prccreob0024
+ cvocertf telnet:cpc25 cvocertf0011 u4rmfeem cvocertf0011
+ repa3953 telnet:cpc25 repa39530004 u4rmfgdj repa39530004
+ prccreat telnet:cpc25 prccreat0016 u4espjmb prccreat0016
+ prccreob telnet:cpc25 prccreob0025 u4rmfdcg prccreob0025
+ prccrein telnet:cpc25 prccrein0037 u4rmsslk prccrein0037

Figure 5. Sample mix table file used by mix

the number of scripts per user. Second, not every CEFMS user has the requisite
CEFMS privileges to perform every CEFMS activity. This situation is handled
by means of a script-user file which lists each script followed by the usernames
allowed to run that script. Third, the initiation times of scripts should reflect the
behavior of actual users (i.e., a mix table which schedules scripts of the same
type at the same time is probably unrepresentative of actual CEFMS usage).
Detailed data describing (a) which CEFMS users perform which tasks and
(b) the ordering of tasks during a workday were unavailable. As a result, scripts
were randomly assigned to emulated users and the order of script initiation was
also randomized.

A Bourne shell script, sc2mt, was written to convert script counts to a mix
table; it has options to specify the number of emulated users in the table and the
name of the script-user file which handles the problem of CEFMS privileges.
Randomization, which resolves the third issue noted above, is built into the shell
script. This script is listed in Appendix A.

Producing the Preparatory Mix
Table from the Mix Table

Some CEFMS activities may be performed only after one or more prior
activities have been completed. For example, a PR&C may be certified only
after it has been created and approved. In terms of executable scripts applied to
a particular PR&C, the correct execution order is prccreat, prcapprv , prccertf ,
prccreob, prcappob, prccrerr , prccrein. Similarly, a travel order may be
authenticated only after the travel order has been created, requested, and
approved; the correct order in this case is torcreat, torreque, torapprv ,
torauthn , torcrevo, and torappvo.

There are several problems with including sequences of this sort in a BT.
First and foremost, it is not representative; an individual PR&C or travel order is
rarely, if ever, pushed through the system in a single day, much less in a single
2-hr period. Second, if script initiation times are randomly selected, it is difficult

18
Chapter 3 Mix Preparation

to ensure that the requisite previous scripts have completed before the next script
in the sequence is initiated without assigning the entire sequence to a single emu-
lated user. This has the unrepresentative effect of forcing the initial scripts in
the sequence to the beginning of the BT and the final scripts in the sequence to
the end (e.g., the prccreat scripts would be executed relatively early in the BT).
Third, in some cases, including an entire sequence is impossible. Specifically,
travel orders must be issued before a trip begins, and travel vouchers, which han-
dle employee reimbursement, must be issued after a trip is completed; CEFMS
has built-in controls to prevent issuing a travel order and a travel voucher for the
same trip on the same day. Therefore, torcrevo, which creates a travel voucher,
may be executed, at the earliest, one business day after the corresponding
torauthn .

The solution to this problem is to prepare the CEFMS database so that all the
requisite prior transactions have been posted to the database prior to the actual
BT. The number of prior transactions is large enough so that initiating these
transactions manually is infeasible. Instead, a Bourne shell script, mt2mt0,
creates a preparatory mix table that specifies all the necessary preparatory trans-
actions. This shell script examines each script/line in the actual mix table to
determine if it requires preparatory transactions. If it does, the necessary script/
line(s) are written to the preparatory mix table. As an example, assume that the
file fragment shown in Figure 5 is the actual mix table provided as input to this
shell script. Then the output (the preparatory mix table) is given in Figure 6.
The shell script itself is listed in Appendix A.

Producing Mix Command Files from Mix Tables

Both the actual mix table and the preparatory mix table must have an associ-
ated mix command file. This file contains commands to select the correct mix
table, initialize global variables, set the time interval between user initiations,
actually start the users, set the time interval between resuming successive sus-
pended users, actually resume the users, and actually terminate the BT.

Users may be initiated using the mix command start all , or they may be
initiated individually by name (using, for example, start user003), or they
may be initiated at a specified time since the start of the test (using, for example,
at 120 start user003). It was originally thought that the capability of
starting particular users at particular times would be heavily used in order to
maintain the desired load on the SUT. This turned out not to be the case in prac-
tice. However, it is still possible that some types of BTs may require this fea-
ture; this possibility is explored in a later section. In any case, the Bourne shell
script mt2mc, which writes the mix command file, requires the name of the
associated mix table file as input. This shell script is listed in Appendix A.

Chapter 3 Mix Preparation 19

u0019, cvocreat telnet:cpc25 cvocreat0010 u4rmfdcg cvocreat0010 cvocertf0010
+ prccreat telnet:cpc25 prccreat0116 u4imbmvs prccreat0116 prccreob0023
+ prcapprv telnet:cpc25 prcapprv0101 u4immhmh prccreob0023
+ prccertf telnet:cpc25 prccertf0080 u4rmsddw prccreob0023
+ prccreat telnet:cpc25 prccreat0117 u4evajwk prccreat0117 prccrerr0004
+ prcapprv telnet:cpc25 prcapprv0102 u4enshha prccrerr0004
+ prccertf telnet:cpc25 prccertf0081 u4rmfdcg prccrerr0004
+ prccreob telnet:cpc25 prccreob0058 u4imcwdp prccrerr0004
+ prcappob telnet:cpc25 prcappob0040 u4rmsslk prccrerr0004
+ viscreat telnet:cpc25 viscreat0011 u4gsrjsh viscreat0011 visapprv0011
+ torcreat telnet:cpc25 torcreat0018 u4gsrjsh torcreat0018 torauthn0009
+ torreque telnet:cpc25 torreque0013 u4hvcjph torauthn0009
+ torapprv telnet:cpc25 torapprv0009 u4hssbpf torauthn0009
+ prccreat telnet:cpc25 prccreat0118 u4er9clk prccreat0118 prccreob0024
+ prcapprv telnet:cpc25 prcapprv0103 u4imcbjc prccreob0024
+ prccertf telnet:cpc25 prccertf0082 u4rmsddw prccreob0024
+ cvocreat telnet:cpc25 cvocreat0011 u4rmsslk cvocreat0011 cvocertf0011
+ prccreat telnet:cpc25 prccreat0119 u4enrhrh prccreat0119 prccreob0025
+ prcapprv telnet:cpc25 prcapprv0104 u4eeaead prccreob0025
+ prccertf telnet:cpc25 prccertf0083 u4rmfals prccreob0025
+ prccreat telnet:cpc25 prccreat0120 u4hwrmjt prccreat0120 prccrein0037
+ prcapprv telnet:cpc25 prcapprv0105 u4hsljfg prccrein0037
+ prccertf telnet:cpc25 prccertf0084 u4rmfeem prccrein0037
+ prccreob telnet:cpc25 prccreob0059 u4pwzdrh prccrein0037
+ prcappob telnet:cpc25 prcappob0041 u4rmsslk prccrein0037

Figure 6. Sample preparatory mix table file used by mix

 The primary source for this section was Pure Software (1996).1

20
Chapter 4 Script Preparation

4 Script Preparation

Understanding script preparation requires a knowledge of the RTE tools pro-
vided for this purpose; these are discussed in the first section of this chapter.
The subsequent section describes how these tools were used to create prototype
scripts and provides details on the customizations necessary to transform the pro-
totypes into the scripts actually used in the BTs.

PurePerformix/TTY 1

Version 3.2.2 of PurePerformix/TTY, an RTE licensed from Pure Software,
Inc., was used to impose the workload on the various SUTs. This version of
PurePerformix/TTY includes the following UNIX tools: capture, compose,
preview, scc, play, extract, report , mix, and draw. The first five of these were
frequently used to prepare scripts.

capture is used to create scripts from interactive sessions, with either the
SUT or a compatible system. When keystrokes are entered, they are stored in a
file before being sent to the specified communications port on the SUT. For
example, entering capture prcappob /dev/tty4 initiates an interactive
session with the SUT via port /dev/tty4 on the RTE. File prcappob.x will contain
a copy of every keystroke entered during the inter-active session. If capture
prcappob telnet:cpc25 is entered instead, then communication with
SUT cpc25 would take place using telnet rather than over a specified serial
line. The telnet approach was used exclusively for the CEFMS tests. Addition-
ally, when the -t option is specified, capture records type times and response
times in the keystroke file for pos-sible later use by compose.

A sample keystroke file is shown in Figure 7. Lines in the keystroke file
which do not begin with a tilde (~) are literal keystrokes typed by the user and
transmitted to the SUT. Lines beginning with ~c are comments. Lines begin-
ning with ~t contain the type time and response time noted above. Sequences
such as ~K_ENTER and ~K_F3 provide mnemonic representations of special

Chapter 4 Script Preparation 21

~c TERM=vt220
~c capture -t -k vt220 prcappob telnet:localhost
~t 0.20 3.62
u4rmsslk~K_ENTER
~t 1.16 1.11
please~K_ENTER
~t 3.33 2.74
tms~K_ENTER
~t 26.98 4.37
3~K_ENTER
~t 1.23 1.17
5~K_ENTER
~t 0.99 0.94
5~K_ENTER
~t 1.94 1.89
6~K_ENTER
~t 7.51 7.42
~c CEFMS Enter Query
~K_F2
~t 7.17 7.17
w81ewf63196833
~t 0.20 4.77
~c CEFMS Execute Query
~K_F3
~t 30.44 30.12
y~K_ENTER
~t 3.87 3.83
~c VT220 End
~K_END
~t 15.73 14.92
~c CEFMS Exit or Previous Screen
~K_F10
~t 4.42 4.35
1~K_ENTER
~t 2.22 2.15
logout~K_ENTER

Figure 7. Sample keystroke file produced by capture

characters, in this case the enter key and the F3 function key, respectively.
These mnemonic representations are defined in the keys file; use of this file is
specified by the -k option to capture or by setting the shell environment vari-
able P_KEYS. The keys file used to capture the scripts used in these tests is
named vt220.h; it is listed in Appendix B.

After the keystrokes for a particular script are captured, the script itself must
be constructed. This is done using the compose command; its output is a C
source file, an example of which is shown in Figure 8. compose begins by
writing the header portion of a C source file; this header is the initial 17 lines in
the example. compose then reads the keystroke file created by capture and
automatically retypes those keystrokes, thereby emulating an actual session with
the SUT. As these keystrokes are sent to the SUT, Xmit() and Kxmit()
statements are written to the C source file. When this C program is executed,
those statements will transmit those same keystrokes to the SUT. As responses
are received, Rcv() statements are written to the C source file. When the C

22
Chapter 4 Script Preparation

/* PurePerformix/TTY 3.2.2 */
/* TERM=vt220 */
/* capture -t -k vt220 prcappob telnet:localhost */
/* compose -a 10 -k vt220 prcappob telnet:localhost */

#include “vt220.h”

Set(CDELAY); /* Put typing delay between characters */
Typerate(5); /* Typing delay in CPS */
/* Bitrate(9600) ; */ /* Add RS-232 delays to response times */
Thinkuniform(1,2.5) ; /* Think delay at every Xmit() */
Seed (getpid()) ; /* Seed random number generator */
Timeout (300, CONTINUE) ; /* What to do if Rcv()takes too long */
Unset (NOTIFY) ; /* Don’t display warnings. Use Mon to find them */

/* Modify to disable Monitor Zoom or to change terminal descritpion */
Term (ZOOM, VT220 LINES24 AUTOWRAP) ;

/* M^J^M^JUNIX(r) System V Release 4.0 (cpc25)^M^J^M^@^M^J^M^@login: */
Rcv(“^@^M^J^M^@login: ”);

Kxmit(“u4rmsslk”, K_ENTER);
/* u4rmsslk^M^JPassword: */
Rcv(“^JPassword: ”);

Kxmit (“please”, K_ENTER);
/* ^M^J^M^Jcpc25:/wes/u4rmsslk {33}% */
Rcv(“rmsslk{33}% ”);

/* Suspend(); */

Beginscenario (“prcappob”) ;

Kxmit (“tms”, K_ENTER);
/* qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqj^ [[24;1H^OCount: *0^[[17;51H */
Rcv(“t: *0^[[17;51H”);

Kxmit(“3”, K_ENTER);
/* e enter selection: ^[[47;30;22m2^[[17;57H^[[0;44;37;1m ^[[17;51H */
Rcv(“;lm ^[[17;50H”);

Ksmit(“5", K_ENTER);
/* Please enter selection: ^[[47;30;22m2 ^[[18;51H^[[0;44;37;1m */
Rcv(“ ^[[18;51H^[[0;44;37;1m”);

Figure 8. Sample script produced by compose (Continued)

program is executed, those statements will cause the program to wait until the
specified string is received from the SUT.

Of particular interest is the technique whereby compose detects the end of a
response from the SUT. Although it is possible to instruct compose to wait for a
period of silence on the communication line as a signal that the SUT response is
over, this alternative was not chosen. A heavy workload may increase response
times and cause compose to interpret a delayed response as the end of a

Chapter 4 Script Preparation 23

Kxmit(“5”, K_ENTER);
/* Hplease enter selection: ^[[47;30;22m2 ^[[19;47H^[[0;44;37;1m */
Rcv(“ ^[[19;47H^[[0;44;37;1m”);

Kxmit(“6”, K_ENTER);
/* Y to accept or ‘D’ to delete. Then <ENTER>.^[[2;18H^[[0;44;37;1m^G */
Rcv(“0;44;37;1m^G”);

/* CEFMS Enter Query */
Kxmit (“”, K_F2);
/* ^ [[24 ; 35H^[[0;44;37;1mENTER QUERY^[[3;18H */
Rcv(“ENTER QUERY^[[3;18H”);

Xmit(“w81ewf63196833");
/* 8^[[0;44;37;1m^[[47;30;22m3^[[0;44;37;1m^[[47;30;22m3^[[0;44;37;1m */
Rcv(“[47;30;22m3^[[0;44;37;1m^[[47;30;22m3^[[0;44;37;1m”);

/* CEFMS Execute Query */
Kxmit(“”, K_F3);
/* cept or ‘D’ to delete. Then <ENTER>.^[[24;9H^[[0;44;37;1m1^[[2;18H */
Rcv(“40;37;1m1^[[2;18H”);

Kxmit(“y”, K_ENTER);
/* COMMIT> TO PROCESS . ^[[2;18H^[[0;44;37;1m^G */
Rcv(“0;44;37;1m^G”);

/* VT220 End */
Kxmit(“”,K_END);
/* complete - - 6 records posted and committed.^[[2;18H^[[0;44;37;1m^G */
Rcv(“0;44;37;1m^G’);

/* CEFMS Exit or Previous Screen */
Kxmit(“”, K_F10);
/* ^[[24;9H^[[0;44;37;1m0^[[19;47H */
Rcv(“7;lm0^[[19;47H”);

Kxmit(“1", K_ENTER);
/* ;1m^[[2J^O^[[0;44;37;1m^[[?11^[>^[[m^[[2Jcpc25:/wes/u4rmsslk{34}% */
Rcv(“msslk{34}% ”);

Kxmit(“logout”, K_ENTER);
/* logout^M^J ^M^J You have now logged off cpc25 ^M^J ^M^J */
Wait(2);

Endscenario(“prcappob”);

Figure 8. (Concluded)

response; the solution is to make the specified period of silence longer than any
conceivable response time delay. Unfortunately, this approach results in
artificial delays being present in the script. To avoid these problems, compose
examines the keystroke file to determine a unique character string which will
serve as a pattern to mark the end of a response.

Scripts, like most other programs, must be tested, debugged, and modified.
The preview command facilitates this process by interpreting scripts produced
by compose. This type of execution is not recommended for actual benchmark

24
Chapter 4 Script Preparation

testing because of its slowness relative to the execution of a compiled program,
but it is ideal for use during script development. preview can only interpret
PurePerformix/TTY commands (e.g., those generated by compose); if C lan-
guage statements have been inserted in the script, they are ignored. The script
must be compiled for these statements to take effect. Like a compiled script,
preview produces a log file that contains a time-stamped entry for each trans-
mission by the RTE and each response from the SUT. Additionally, by specify-
ing the -d option, the emulated session will be displayed on the screen as it takes
place.

When the user is satisfied with the script, the script C compiler scc is used to
compile it. scc preprocesses the script file, adding, among other things, an
appropriate header and trailer to make the script a valid C program. After this
step, it then invokes the actual C compiler cc to produce an object program and
to link that program with a special library of PurePerformix/TTY functions. As
noted above, execution of the resulting program is faster than script interpreta-
tion using preview.

As an example, assume prcappob.c is the script produced by compose. Then
scc prcappob will compile prcappob.c and produce an executable program
named prcappob. Entering prcappob -d telnet:cpc25
prcappob.log2 executes the script; the -d option causes the emulated ses-
sion to be displayed, telnet:cpc25 instructs the script to connect to host
cpc25 using telnet, and prcappob.log2 will contain all of the responses trans-
mitted by the SUT to the RTE, as well as transaction and response times. If this
latter parameter is omitted, times will be logged in prcappob.l: if "" is specified,
then no log file will be produced. Other script-specific parameters, such as login
names and passwords, may be supplied after these. After prcappob has been
executed and a log file has been produced, play prcappob may be used to
replay the output contained in the log file. If play -s is used, then the user
may step through the playback one response at a time by pressing the space bar.
By default, play replays the session at the speed indicated by the time stamps in
the log file. When this is too fast, the -f option may be used to slow down the
replay.

Development of CEFMS Scripts

Before script development could begin, a snapshot of the WES production
CEFMS database on cpc25 was taken. This was necessary to ensure benchmark
uniformity (i.e., every BT would impose the same tasks on the same database).
Also, installation of this test database allowed BT development work to proceed
without modifying actual production data. In this environment, single scripts or
small batches of scripts could be tested, but a full-fledged BT (with 150+ emu-
lated users) could not be attempted during normal production hours because of
the negative impact on user response time.

 Global variables, a PurePerformix/TTY feature, were used to specify values common to 1

every script; these were suspend status, think times, time-out duration, and type rate.

Chapter 4 Script Preparation 25

An important issue involved how CEFMS activities were translated into
scripts. Many CEFMS users log on to cpc25, perform one CEFMS task, and
then log off. Others sign on in the morning, perform CEFMS tasks throughout
their shift, and log off when their shift is over. Using PurePerformix/TTY, it is
possible to construct scripts which model both types of user behavior. However,
the second modeling mode carries some risk; if a script containing multiple tasks
should hang or otherwise experience an error shortly after starting, then subse-
quent tasks may either execute improperly or not execute at all. Using the first
mode avoids this difficulty since each script consists of a login-CEFMS task-
logout sequence. Any failures are confined to that one script. To avoid this dif-
ficulty, the first mode was used. Although this diminished the representativeness
of the tests, it allowed better timing of individual CEFMS activities and more
rapid script development.

Script development was accomplished using the PurePerformix/TTY tools
previously described. Actual CEFMS users were recruited to perform the activi-
ties noted earlier. They were signed on to cpc25, and their interactive responses
were recorded using capture. The keystroke files so created were processed by
compose, and then scc was used to produce C source files.

Because each scenario would be performed multiple times during a test, it
was necessary to parameterize the scripts. Each script (i.e., each C source pro-
gram) was modified so that the UNIX login name could be supplied from the
command line as an argument. Some scripts required additional information,
such as work-item numbers or PR&C numbers, to execute correctly. In other
cases, preparatory scripts had to produce output information that was later used
as input to subsequent scripts. To handle this situation, two addtional command
line parameters were added to each script, an input file name and an output file
name.

It was important that a number of activities performed by scripts be done the
same way by every script. These activities included reading global variables,1

setting RTE parameters, processing the argument list, reading the input file, log-
ging into UNIX, entering CEFMS, suspending the script, leaving CEFMS, and
logging out of UNIX. C header files were developed to perform these tasks; they
were inserted into every script to ensure that the tasks were handled in a consis-
tent manner. These header files are listed in Appendix B.

Finally, the scripts were individually tested; each was invoked from the com-
mand line on the RTE, causing the interactive session to be imposed on the SUT.
This served two purposes: first, the scripts themselves were validated, and sec-
ond, the processor time used by each was recorded.

26
Chapter 5 Benchmark Test Results and Conclusions

5 Benchmark Test Results
and Conclusions

Summary of BT Methodology

To summarize the test methodology described to this point, preparing for a
BT requires the following steps:

a. Determine the activities (transactions and reports) to be represented in
the BT.

b. Use SQL scripts to determine the number of times these activities were
performed over, for example, a one-month period.

c. Use the Bourne shell scripts discussed previously to convert activity
counts to mix tables and mix command files.

d. Use capture and compose to create scripts for each of the activities.

e. Run a mix using the preparatory mix table to prepare the CEFMS data-
base; save a copy of this prepared database.

f. If necessary, restore the prepared database.

g. Perform a BT by running a mix using the actual mix table.

h. If some scripts fail, fix the problem and back up the appropriate number
of steps.

i. Use extract and report to produce reports on the elapsed script times and
response times observed in the BT.

j. Save copies of the pacct and wtmpx files for later analysis.

Chapter 5 Benchmark Test Results and Conclusions 27

Results of Three Benchmark Tests

On the evening of 4 May 1997, three BTs were performed. The RTE was a
Sun file server (wescs2.wes.army.mil) with four 167-MHz UltraSPARC pro-
cessors, while the SUT was a Sun file server (cpc25.usace.army.mil) with
twenty-two 167 MHz UltraSPARC processors. The specifications of both of
these systems are listed in Appendix C. These specifications include the layout
of the CEFMS database on the SUT. The hardware configurations for all three
BTs were identical except that, for BT3, half of the processors were taken
off-line.

The uniformity of the software configurations was maintained to as great a
degree as possible. The CEFMS database was restored prior to each BT. Think
times were randomly distributed between 0.5 and 1.5 seconds, and the type rate
was set to 5 characters per second. The same mix table was used throughout.
Only one script failure occurred, a single instance of labctran on BT 2. The
durations of the tests were 01:09:52, 01:10:21, and 01:10:19 for BTs 1, 2, and 3,
respectively. This last time is noteworthy in that it indicates that the machine is
not CPU-bound; more specifically, half the number of processors are apparently
able to complete the workload in the same amount of time as the full comple-
ment. This could be due to the system’s being bound by input/output or by think
time. The BT was designed to be a 2-hr test based on data from a Sun file server
(cpc22.usace.army.mil) with fourteen 60-MHz SuperSPARC processors. Thus,
even though it is tempting to conclude that cpc25, which has over four times the
total MHz of cpc22, is less than two times more powerful, that would be a con-
clusion not supported by the evidence. To measure the relative power of the two
systems would require running the BT on cpc22. Furthermore, one such BT
would still be insufficient in the statistical sense; enough BTs would have to be
conducted to perform a hypothesis test.

A user workload curve for BT 1 is shown in Figure 9. It illustrates the taper-
ing off of the number of active users, as opposed to a clean test termination;
some manual adjustments were made to the mix table to prevent this phenome-
non from being even more pronounced. The workload curves for the other two
BTs were essentially identical. Additional detailed information on scenario
completion is contained in Tables 2-7 which present scenario and interactive
response time data.

Problems Encountered

When this project was initiated in 1995, the RTE hardware platform was a
luggable Compaq 486 PC. The operating system on this PC was SCO Open
Desktop 1.1 (UNIX System V/Version 3.2 with Berkeley enhancements). In
spite of numerous attempts to tune the system, this RTE was inadequate to drive
the SUT. Scripts terminated improperly because their remote connections were
lost, the file system was unable to handle the large number of open log files, and
other failures were encountered. Migrating to the current larger Sun platform

28
Chapter 5 Benchmark Test Results and Conclusions

Figure 9. Active users during BT 1

Table 2
Scenario Statistics for BT 1

Scenario Executed seconds Std. Dev. Min. Percentile Percentile Percentile Max.

Number
of Times Average 50 75 90th th th

coraccpt 12 241.07 3.86 235.97 240.10 242.49 246.99 247.31
corapprv 12 43.78 1.13 41.41 43.69 44.81 45.14 45.26
corcertf 12 44.28 1.10 42.92 44.14 44.97 45.39 46.73
corcreat 12 274.33 4.01 266.71 273.31 276.80 278.65 282.65
cvocertf 112 44.10 1.20 40.91 43.99 44.82 45.63 48.56
cvocreat 111 81.41 1.91 76.37 81.60 82.74 83.91 85.88
invcreat 297 67.59 2.00 62.55 67.50 68.82 70.19 75.27
labcreat 20 362.69 4.28 354.65 361.65 365.28 368.08 373.03
labctran 21 172.10 7.44 167.18 169.34 172.64 175.85 202.77
prcappob 169 43.32 1.19 39.89 43.24 44.07 44.56 50.22
prcapprv 169 47.32 1.37 43.98 47.19 48.08 48.77 57.47
prccertf 169 45.95 1.41 42.54 45.86 46.63 47.29 55.66
prccreat 169 283.00 4.00 274.55 282.91 285.93 288.10 294.38
prccreob 169 223.86 3.50 216.14 223.46 225.99 228.54 233.44
repa3953 23 91.79 3.93 86.92 91.35 93.32 94.67 106.72
repa4445 1 676.08 0.00 676.08 676.08 676.08 676.08 676.08
repcertl 23 108.33 2.41 103.46 108.41 109.60 111.39 113.14
repcolds 1 426.84 0.00 426.84 426.84 426.84 426.84 426.84
repmscdb 39 71.01 1.86 67.60 70.78 71.45 71.80 81.07
repsdipr 34 98.15 2.05 94.28 97.96 99.38 101.04 102.68
reptmatt 23 114.23 2.57 108.29 114.31 115.52 116.79 120.02
repvstat 1 893.83 0.16 893.83 893.83 893.83 893.83 893.83
rrecreat 54 54.44 1.70 51.62 54.27 55.39 57.18 59.41
torapprv 54 75.75 1.61 72.60 75.56 76.94 77.93 79.17
torauthn 38 63.02 1.31 60.98 62.85 63.64 64.94 66.33
torcreat 53 208.61 4.51 201.66 208.30 210.94 213.77 225.11
torreque 38 56.76 1.52 53.96 56.45 57.83 58.64 60.78
visapprv 89 45.42 1.15 42.57 45.26 46.19 47.08 48.08
viscreat 89 114.94 2.14 109.72 114.86 116.27 117.97 120.05

Overall 2,014 105.83 85.89 39.89 67.47 115.24 271.72 893.83

Chapter 5 Benchmark Test Results and Conclusions 29

Table 3
Interactive Response Time Statistics for BT 1

Transaction Executed seconds Std. Dev. Min. Percentile Percentile Percentile Max.

Number
of Times Average 50 95 99th th th

ctrl_f1 1,924 0.07 0.03 0.01 0.07 0.12 0.16 0.74
ctrl_f2 418 0.08 0.04 0.00 0.08 0.11 0.15 0.34
ctrl_f3 304 1.35 1.48 0.06 0.10 3.30 3.61 3.82
ctrl_f4 12 0.07 0.00 0.07 0.07 0.08 0.08 0.08
ctrl_f6 89 0.18 0.03 0.15 0.18 0.26 0.27 0.28
delete 67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
down 7,546 0.00 0.01 0.00 0.00 0.01 0.04 0.10
end 4,525 0.61 2.98 0.00 0.12 1.33 6.98 42.74
enter 59,444 0.12 4.34 0.00 0.01 0.11 0.46 823.25
erase 717 0.00 0.01 0.00 0.00 0.01 0.01 0.10
f10 5,098 0.07 0.08 0.00 0.07 0.16 0.18 1.10
f2 2,528 0.03 0.02 0.00 0.01 0.06 0.07 0.18
f3 3,598 0.50 0.94 0.05 0.07 2.97 4.00 11.50
f4 7,338 0.18 0.26 0.01 0.07 0.63 1.31 3.00
f7 676 0.02 0.01 0.01 0.02 0.02 0.03 0.10
f9 1,417 0.02 0.02 0.00 0.03 0.05 0.08 0.23
other 9,572 0.01 0.11 0.00 0.00 0.02 0.10 7.93
page_down 371 0.07 0.04 0.00 0.09 0.10 0.13 0.16
page_up 1,352 0.05 0.02 0.02 0.06 0.07 0.08 0.15
shift_tab 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tab 1,322 0.01 0.01 00.0 0.00 0.04 0.05 0.10
tms 2,014 22.95 0.16 22.61 22.91 23.24 23.47 26.48
up 169 0.00 0.01 0.00 0.00 0.01 0.01 0.09
Unspecified 6,042 0.26 0.40 0.00 0.05 0.70 2.54 6.42

Overall 116,544 0.53 4.34 0.00 0.02 0.63 22.91 823.25

eliminated most of these difficulties. Future BT developers should be careful to
select a machine powerful enough to drive a test.

During the initial BTs, it was discovered that when multiple PR&Cs were
created simultaneously, duplicate PR&C numbers were generated by CEFMS; in
computer science terminology, there was no locking of the critical region in the
CEFMS code that produced the numbers. Some of the subsequent PR&C type
scripts that depended on one of these initial prccreat scripts failed as a result.
Workarounds for this problem were necessary until the error in the code was
fixed.

A related problem involved the configuration management of the database
software. Periodically, BTs that completed successfully one day would unex-
plainedly fail the next. It was discovered that the CEFMS development team
was making nightly changes in the production version of CEFMS on a frequent
basis. Occasionally, a source code modification fixing one problem would
create another problem. The test coverage of the BT would often uncover the
new bug. After several episodes of recapturing scripts, the versions of both the
CEFMS database and software was frozen.

30
Chapter 5 Benchmark Test Results and Conclusions

Table 4
Scenario Statistics for BT 2

Scenario Executed seconds Std. Dev. Min. Percentile Percentile Percentile Max.

Number
of Times Average 50 75 90th th th

coraccpt 12 241.39 4.81 229.47 241.90 244.33 245.97 247.51
corapprv 12 44.11 1.10 41.78 44.31 44.70 45.43 45.68
corcertf 12 44.45 0.80 43.61 44.10 44.46 45.37 46.72
corcreat 12 274.47 3.41 268.55 274.04 274.71 278.20 282.76
cvocertf 112 44.31 1.20 41.31 44.28 45.10 45.95 47.39
cvocreat 111 82.12 2.08 77.88 82.08 83.86 85.01 85.97
invcreat 297 68.07 2.05 62.55 68.09 69.34 70.83 73.80
labcreat 20 363.15 4.53 356.45 362.15 366.57 368.84 372.78
labctran 20 175.62 9.05 165.50 173.80 177.54 180.61 210.52
prcappob 169 43.34 1.15 40.63 43.39 44.05 44.71 47.63
prcapprv 169 47.35 1.36 44.43 47.27 48.12 48.77 57.57
prccertf 169 46.00 1.52 43.09 45.98 46.88 47.53 55.90
prccreat 169 283.25 4.17 271.05 283.42 285.98 288.77 294.46
prccreob 169 224.66 3.37 214.82 224.80 227.21 228.84 233.96
repa3953 23 95.46 5.78 89.43 93.65 96.34 102.13 117.73
repa4445 1 716.11 0.00 716.11 716.11 716.11 716.11 716.11
repcertl 23 109.17 3.20 104.63 108.19 110.08 115.25 116.32
repcolds 1 468.15 0.07 468.15 468.15 468.15 468.15 468.15
repmscdb 39 71.06 2.10 68.86 70.90 71.41 72.28 82.29
repsdipr 34 98.70 2.49 94.24 98.11 99.95 101.33 106.71
reptmatt 23 114.64 3.50 109.81 114.38 115.08 118.47 126.94
repvstat 1 962.49 0.14 962.49 962.49 962.49 962.49 962.49
rrecreat 54 54.69 1.65 51.42 54.63 55.65 56.96 58.45
torapprv 54 76.51 1.85 72.22 76.15 77.65 79.52 80.66
torauthn 38 62.95 1.40 60.34 62.93 63.97 64.83 65.93
torcreat 53 209.66 3.83 202.04 209.50 212.77 214.80 217.20
torreque 38 57.14 1.36 53.52 56.95 58.12 59.05 59.38
visapprv 89 45.61 1.35 42.02 45.40 46.35 46.97 50.77
viscreat 89 115.29 2.34 109.20 115.12 116.87 118.84 121.10

Overall 2,013 106.29 86.57 40.63 68.03 115.63 271.05 962.49

An even more serious problem involved the UNIX usernames used in the test.
These names were selected from actual WES CEFMS users. It was quickly dis-
covered that certain tasks could be performed only by users with the right set of
CEFMS permissions. Furthermore, there were critical relationships between
users who “owned” particular work-item codes and other users who created
PR&Cs. Enforcing these requirements was accomplished by creating a script-
user file that specified which users could legally execute a script and a user-
work-item code file that specified which work-item codes were owned by a
particular user. The former file was an input to sc2mt and both were input to
mt2mt0.

Future Work

A problem currently under study involves the shape of the workload curve.
There are a number of possible measures of machine activity, including number

Chapter 5 Benchmark Test Results and Conclusions 31

Table 5
Interactive Response Time Statistics for BT 2

Transaction Executed seconds Std. Dev. Min. Percentile Percentile Percentile Max.

Number
of Times Average 50 95 99th th th

ctrl_f1 1,924 0.07 0.03 0.01 0.07 0.12 0.18 0.54
ctrl_f2 418 0.08 0.04 0.00 0.08 0.13 0.17 0.27
ctrl_f3 304 1.46 1.61 0.06 0.10 3.57 4.01 4.47
ctrl_f4 12 0.08 0.03 0.07 0.07 0.08 0.17 0.17
ctrl_f6 89 0.20 0.03 0.17 0.19 0.26 0.27 0.29
delete 67 0.00 0.00 0.00 0.00 0.01 0.01 0.01
down 7,546 0.01 0.01 0.00 0.00 0.01 0.01 0.11
end 4,526 0.64 3.02 0.00 0.14 1.52 9.57 42.76
enter 59,442 0.13 4.70 0.00 0.01 0.11 0.43 889.88
erase 717 0.00 0.01 0.00 0.00 0.01 0.02 0.10
f10 5,097 0.07 0.11 0.00 0.07 0.16 0.18 3.78
f2 2,528 0.03 0.03 0.00 0.01 0.06 0.06 0.45
f3 3,598 0.56 1.06 0.04 0.07 3.53 4.42 13.41
f4 7,338 0.18 0.28 0.01 0.07 0.68 1.42 4.21
f7 676 0.02 0.01 0.01 0.02 0.03 0.05 0.19
f9 1,417 0.02 0.02 0.00 0.03 0.05 0.06 0.19
other 9,572 0.01 0.11 0.00 0.00 0.02 0.11 7.98
page_down 371 0.07 0.04 0.00 0.09 0.10 0.13 0.37
page_up 1,352 0.05 0.02 0.02 0.06 0.07 0.08 0.16
shift_tab 1 0.01 0.00 0.01 0.01 0.01 0.01 0.01
tab 1,322 0.01 0.01 0.00 0.00 0.04 0.04 0.12
tms 2,014 22.96 0.16 22.67 22.92 23.23 23.41 26.19
up 169 0.00 0.01 0.00 0.00 0.01 0.01 0.03
Unspecified 6,041 0.25 0.39 0.00 0.05 0.70 1.03 3.14

Overall 116,541 0.54 4.53 0.00 0.02 0.65 22.92 889.88

of users and number of processes. A BT should ideally be a snapshot of machine
activity with a sharp startup and a sharp cutoff. Currently, the start of the curve
is rather steep, and its slope can be controlled (within limits) by setting a para-
meter that controls the interval between resuming suspended scripts. However,
the end of the curve has a particularly severe tailing-off of lingering jobs. Ide-
ally, all emulated users should complete their scripts at about the same time.

There are both static (mix-table-based) and dynamic (mix-command-based)
approaches to solving this problem. A current approach to this problem involves
running the mix to determine which RTE users are lingering, and then manually
editing the mix table to move scripts from those users to RTE users that finish
early. This approach could be automated, or the individual script execution
times could be used to assign scripts to RTE users so that the total times are bal-
anced among those users. A better approach would require devising a schedul-
ing algorithm, perhaps involving assigning priorities to scripts and selecting the
next script to execute as the BT progressed. This could be accomplished by
modifying the mix table so that each RTE user had only one script, and then
writing a program to dynamically interact with mix so that some fixed number of
users was maintained on the SUT. It might be necessary to save such a dynamic-
ally created script initiation order so that the BT could be repeated.

32
Chapter 5 Benchmark Test Results and Conclusions

Table 6
Scenario Statistics for BT 3

Scenario Executed seconds Std. Dev. Min. Percentile Percentile Percentile Max.

Number
of Times Average 50 75 90th th th

coraccpt 12 242.66 3.19 238.03 243.03 243.70 245.97 248.81
corapprv 12 44.47 1.18 42.39 44.00 45.28 45.82 46.25
corcertf 12 45.22 1.25 42.22 45.22 45.59 46.78 47.47
corcreat 12 276.17 5.05 271.72 274.04 276.63 282.56 290.23
cvocertf 112 44.89 1.46 41.32 44.79 45.53 46.75 50.20
cvocreat 111 82.12 2.02 76.89 82.12 83.49 84.66 88.60
invcreat 297 68.43 2.41 62.86 68.20 69.91 71.22 76.94
labcreat 20 364.32 3.68 360.02 363.01 366.37 367.51 375.62
labctran 21 176.92 9.72 168.35 174.12 179.89 185.36 207.58
prcappob 169 43.72 1.29 40.88 43.67 44.52 45.20 49.33
prcapprv 169 47.83 1.59 44.73 47.54 48.52 49.79 55.27
prccertf 169 46.55 1.62 43.14 46.32 47.29 48.54 53.66
prccreat 169 284.25 4.21 274.63 284.21 287.51 289.38 294.14
prccreob 169 224.54 3.73 215.03 224.67 226.82 229.00 236.28
repa3953 23 99.44 8.01 92.32 96.21 99.04 110.73 122.04
repa4445 1 751.96 0.02 751.96 751.96 751.96 751.96 751.96
repcertl 23 110.22 4.14 103.88 109.51 110.55 115.90 121.65
repcolds 1 462.87 0.00 462.87 462.87 462.87 462.87 462.87
repmscdb 39 70.44 4.93 43.49 70.91 71.40 73.12 82.20
repsdipr 34 101.79 4.11 96.99 101.03 103.04 104.83 119.81
reptmatt 23 117.17 6.84 108.12 115.72 119.00 126.33 136.19
repvstat 1 947.52 0.01 947.52 947.52 947.52 947.52 947.52
rrecreat 54 54.91 1.87 51.47 54.70 56.23 57.06 61.27
torapprv 54 76.92 2.38 71.58 76.82 77.77 80.25 84.98
torauthn 38 63.46 2.01 59.32 63.38 64.50 64.93 70.95
torcreat 53 210.45 4.55 200.66 209.91 212.51 216.78 224.08
torreque 38 57.61 1.93 53.24 57.20 58.40 60.16 62.63
visapprv 89 45.82 1.23 42.99 45.77 46.54 47.12 49.82
viscreat 89 115.95 2.22 109.94 115.88 117.58 118.79 122.04

Overall 2,014 106.88 86.73 40.88 68.12 117.08 273.15 947.52

Internally developed tools also deserve additional attention. These include
the shell scripts used to automatically construct script tables and batch command
files for mix. Additional features, such as use of randomly distributed intervals
between script initiations, and more options to control mix content should be
considered. Also, some additional tools should be developed to summarize and
compare the results of multiple benchmark tests. These results currently reside
in a multiplicity of subdirectories, and items of interest must be individually
extracted for inclusion in a summary report.

Another important area for further work requires making the mix and the
scripts themselves more representative. The mix itself can be improved by
basing it on more and better raw workload data. This will require collecting a
larger set of pacct and wtmpx files, as well as monitoring the number and type of
reports created. Furthermore, something must be done to obtain reliable data on
the number of queries being performed.

Chapter 5 Benchmark Test Results and Conclusions 33

Table 7
Interactive Response Time Statistics for BT 3

Transaction Executed seconds Std. Dev. Min. Percentile Percentile Percentile Max.

Number
of Times Average 50 95 99th th th

ctrl_f1 1,924 0.08 0.03 0.01 0.07 0.13 0.17 0.50
ctrl_f2 418 0.08 0.04 0.00 0.09 0.12 0.17 0.24
ctrl_f3 304 1.48 1.70 0.06 0.10 3.57 5.56 8.10
ctrl_f4 12 0.08 0.01 0.07 0.07 0.08 0.09 0.09
ctrl_f6 89 0.20 0.04 0.16 0.18 0.30 0.36 0.42
delete 67 0.00 0.00 0.00 0.00 0.00 0.00 0.00
down 7,546 0.00 0.01 0.00 0.00 0.01 0.02 0.12
end 4,526 0.66 3.01 0.00 0.14 1.59 8.67 42.38
enter 59,444 0.13 4.76 0.00 0.01 0.12 0.46 875.58
erase 717 0.00 0.01 0.00 0.00 0.01 0.01 0.07
f10 5,098 0.08 0.09 0.00 0.08 0.16 0.22 2.89
f2 2,528 0.03 0.02 0.00 0.01 0.06 0.06 0.22
f3 3,598 0.55 1.05 0.04 0.08 3.02 4.84 16.86
f4 7,338 0.19 0.28 0.01 0.07 0.67 1.43 3.07
f7 676 0.02 0.01 0.01 0.02 0.03 0.06 0.20
f9 1,417 0.02 0.02 0.00 0.03 0.05 0.10 0.27
other 9,572 0.01 0.11 0.00 0.00 0.02 0.11 8.00
page_down 371 0.07 0.04 0.00 0.09 0.11 0.13 0.18
page_up 1,352 0.05 0.02 0.02 0.06 0.07 0.10 0.38
shift_tab 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tab 1,322 0.01 0.01 0.00 0.00 0.04 0.05 0.12
tms 2,014 23.28 0.66 22.62 23.09 24.48 26.67 27.96
up 169 0.00 0.04 0.00 0.00 0.01 0.01 0.07
Unspecified 6,042 0.28 0.44 0.00 0.05 0.81 2.31 6.14

Overall 116,545 0.55 4.59 0.00 0.02 0.68 23.08 875.58

For reasons already noted, scripts were designed to be as independent as pos-
sible; each begins with a user login and terminates with a user logout. This is
not how CEFMS, and most other DBMSs, are accessed. Some CEFMS activities
were not included in the mix simply because there was not time to prepare
scripts for them. Finally, many decisions concerning mix content and size were
made because of limitations imposed by the RTE and operating environment.
All of these issues must be addressed so that the tests carry as much credibility
as possible.

Finally, the work reported herein is of a “proof-of-concept” nature. The
methodology and the tools developed here should be thoroughly exercised by
conducting a full-fledged scientific experiment. Such an experiment would
require the use of statistical experimental design techniques. Specifically, sev-
eral hardware and software factors, which could potentially impact performance,
should be selected, and an analysis of variance approach should be used to test
the effects of those factors. Such an experiment would very probably require
dozens of BTs and significant amounts of manpower, machine time, and disk
space.

34
References

References

Adams, J. C., Currie, W. S., and Gilmour, B. A. C. (1978). “The structure and
uses of the Edinburgh Remote Terminal emulator,” Software-Practice and
Experience 8, 451-59.

Bailey, D. H., and Barton, J. T. (1985). “The NAS kernel benchmark program,”
NASA Technical Memorandum 86711, National Aeronautics and Space
Administration, Ames Research Center, Moffett Field, California.

Buchholz, W. A. (1969). “A synthetic job for measuring system performance,”
IBM Systems Journal 8(4), 309-18.

Curnow, H. J., and Wichman, B. A. (1976). “A synthetic benchmark,” The
Computer Journal 19(1), 43-49.

Cybenko, G. (1990). “Supercomputer performance evaluation and the perfect
club.” Proceedings of the 1990 International Conference on Super-
computing. Association for Computing Machinery, New York, 254-66.

Dongarra, J. J., Martin, J. L., and Worlton, J. (1987). “Computer benchmarking:
paths and pitfalls,” IEEE Spectrum 24(7), 38-43.

Dougherty, D., and Robbins, A. (1997). sed & awk. O'Reilly & Associates,
Sebastopol, California.

Federal Computer Performance Evaluation and Simulation Center. (1979).
“Use and specifications of remote terminal emulation in ADP system
acquisitions,” FPR 1-4.11, General Services Administration, Automated
Data and Telecommunications Services, Washington, DC.

Ferrari, D. (1972). “Workload characterization and selection in computer
performance measurement,” Computer 5(4), 18-24.

Grassl, C. M., and Schwarzmeier, J. L. (1990). “A new measure of
supercomputer performance: results from the perfect benchmarks,” Cray
Channels 12(1), 14-16.

References 35

Gustafson, J., Rover, D., Elbert, S., and Carter, M. (1990). “SLALOM: the first
scalable supercomputer benchmark,” Supercomputing Review, 56-61.

Jones, R. (1975). “A survey of benchmarking: the state of the art.”
Benchmarking: computer evalaution and measurement. N. Benwell, ed.,
Hemisphere Publishing Corporation, Washington, DC, 15-23.

Kernighan, B. W., and Hamilton, P. A. (1973). “Synthetically generated
performance test loads for operating systems.” 1st Annual SIGME
Symposium on Measurement and Evaluation. Association for Computing
Machinery, New York, 121-26.

McMahon, F. (1986). “The Livermore Fortran kernels: computer test of the
numerical performance range,” Technical Report UCRL-53745, Lawrence
Livermore National Laboratory, Livermore, California.

Pure Software. (1996). PurePerformix/TTY user's guide. Pure Software,
Sunnyvale, California.

Randell, B., and Russell, L. J. (1960). ALGOL 60 implementation. Academic
Press, London.

Saavedra-Barrera, R. H. (1990). “The SPEC and perfect club benchmarks:
promises and limitations.” Hot Chips Symposium 2. Santa Clara, California.

Sreenivasan, K., and Kleinman, A. J. (1974). “On the construction of a
representative synthetic workload,” Communications of the ACM 17(3),
127-33.

Standard Performance Evaluation Corporation. (1997). Welcome to SPEC,
http://www.specbench.org/.

Weicker, R. P. (1984). “Dhrystone: a synthetic systems programming
benchmark,” Communications of the ACM 27(10), 1013-30.

__________. (1988). “Dhrystone benchmark: rationale for version 2 and
measurement rules,” SIGPLAN Notices 23(8), 49-62.

Wood, D. C., and Forman, E. H. (1971). “Throughput measurement using a
synthetic job stream.” 1971 Fall Joint Computing Conference. AFIPS
Conference Proceedings, 39, AFIPS Press, Montvale, NJ, 51-56.

Appendix A Software Tools Developed for This Project A1

Appendix A
Software Tools Developed for
This Project

This appendix lists many of the major software tools developed as part of this
project. The first, prccertf.sql is an SQL script which counts the number of
PR&C certifications performed during a specified time period. It is an example
of numerous, but similar, SQL scripts written to obtain daily transaction counts.
The remaining tools come in pairs. The first of a pair is a Bourne shell script
which serves as a “wrapper” for the awk script which follows. All of the awk
scripts call utility scripts to perform various housekeeping functions such as dis-
playing error messages, manipulating linked lists, performing date conversion,
and the like. These utility scripts are not listed here.

prccertf.sql
set pagesize 60
set echo off
set term off
set feedback off
set linesize 21
ttitle 'PR&C CERTIFICATIONS'
column trunc(a.cert_date) heading 'DATE' format a12
column count(b.prac_line_no) heading 'COUNT' format 9999999
spool prac_cert_man.lst
select trunc(a.cert_date), count(b.prac_line_no)
from pr_amend a, pr_line_item b
where (b.moa_code <> 'I2'

or b.travel_order_no is null
or a.other_purchases_code <> 'CCRD')

and trunc(a.cert_date) between '01-SEP-95' and '30-SEP-95'
and a.prac_no = b.prac_no
group by trunc(a.cert_date)
/
spool off
exit

A2
Appendix A Software Tools Developed for This Project

cpdir
#! /bin/sh
#---
#
NAME
cpdir
#
SYNOPSIS
cpdir -f map_file [-ln]
[-ss source_suffix] [-ts target_suffix]
source_dir target_dir
#
DESCRIPTION
Copy files in source_dir to target_dir.
#
OPTIONS
-mf map_file Columns one and two of map_file contain
the old and new names of the data files.
#
-ln Link instead of copy the files.
#
-ss source_suffix
Append source_suffix to each source file
name.
#
-ts target_suffix
Append target_suffix to each target file
name.
#
source_dir Pathname of the directory containing the
source files to be copied.
#
target_dir Pathname of the directory which will
contain the copies.
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

CMD=`basename $0`
CMD_DIR=`dirname $0`
AWK1="$AWK"
AWK1="$AWK1 -f $CMD_DIR/prerr.awk"
AWK1="$AWK1 -f $CMD_DIR/cpdir.awk"
AWK1="$AWK1 X $*"
eval $AWK1

cpdir.awk
#! /bin/nawk -f
#---
#
NAME
cpdir.awk
#
SYNOPSIS
[awk -f] cpdir X -f map_file [-ln] [-ss source_suffix]
[-ts target_suffix] source_dir target_dir
#
DESCRIPTION
Copy files in source_dir to target_dir.

Appendix A Software Tools Developed for This Project A3

#
OPTIONS
See cpdir for a description of the options.
#
SEE ALSO
cpdir
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

#---
#
FUNCTION
cpdir_getargs
#
PURPOSE
To get input arguments off of the command line.
#
#---

function cpdir_getargs(argc,i) {

Set default values for arguments.

CP_COMMAND = "cp"
 SOURCE_SUFFIX = ""
 SOURCE_DIR = ""
 TARGET_SUFFIX = ""
 TARGET_DIR = ""
 VERBOSE = 0

 # Process the arguments in the array ARGV.

argc = ARGC
ARGC = 1
for (i=2; i<argc; i++)

if (ARGV[i] == "-mf")
ARGV[ARGC++] = ARGV[++i]

else if (ARGV[i] == "-ln")
CP_COMMAND = "ln -s"

else if (ARGV[i] == "-ss")
 SOURCE_SUFFIX = ARGV[++i]
 else if (ARGV[i] == "-ts")
 TARGET_SUFFIX = ARGV[++i]
 else if (ARGV[i] == "-v")
 VERBOSE = 1
 else if (substr(ARGV[i],1,1) == "-")
 prerr("cpdir: Invalid argument " ARGV[i])
 else if (SOURCE_DIR == "")
 SOURCE_DIR = ARGV[i]
 else if (TARGET_DIR == "")
 TARGET_DIR = ARGV[i]

else
 prerr("cpdir: Two directory name arguments

required")

Check for errors in the input arguments.

if (ARGC == 1)
 prerr("cpdir: Required argument mf not supplied")
 if (SOURCE_DIR == "")
 prerr("cpdir: Two directory name arguments required")
 if (system("test -d " SOURCE_DIR))
 prerr("cpdir: Source directory" SOURCE_DIR " does not

exist")

A4
Appendix A Software Tools Developed for This Project

 if (TARGET_DIR == "")
 prerr("cpdir: Two directory name arguments required")
 if (system("test ! -f " TARGET_DIR))
 prerr("cpdir: Target " TARGET_DIR "is not a directory"

)
}

#---
#
FUNCTION
cpdir_init
#
PURPOSE
To initialize variables and prepare for main loop.
#
#---

function cpdir_init(command) {

 # If the target directory does not exist, create it.

 if (system("test -d " TARGET_DIR)) {
 command = "mkdir " TARGET_DIR
 if (VERBOSE)

print command
system(command)

 }
}

#---
#
ROUTINE
Main input loop
#
PURPOSE
Performed for every input line.
#
#---

function cpdir_main(command,source_file,target_file) {

Strip out comments and skip blank lines.

 sub(/#.*/, "")
 sub(/[]+$/, "")
 if ($0 != "") {

 # Build the source and target file names.

 source_file = $1
 if ($2 == "")
 target_file = $1
 else
 target_file = $2
 source_file = SOURCE_DIR "/" source_file SOURCE_SUFFIX
 target_file = TARGET_DIR "/" target_file TARGET_SUFFIX

 # Build the copy command and execute it.

 command = CP_COMMAND " " source_file " " target_file
 if (VERBOSE)
 print command
 system(command)

}
}

Appendix A Software Tools Developed for This Project A5

#---
#
ROUTINE
Main program.
#
PURPOSE
Top level procedure invocations.
#
#---

BEGIN { # Initialization.
 cpdir_getargs() # Process command line arguments.
 cpdir_init() # Initialize variables.
}
{ # Performed once for each input line.
 cpdir_main() # Copy file.
}

mt2mc
#! /bin/sh
#---
#
NAME
mt2mc (Mix Table To Mix Command file)
#
SYNOPSIS
mt2mc [-dtp time] [-dtr time] [-dts time] [-mode number]
[-nsu n|all][-th time][-tl time][-to time][-tr cps]
[file ...]
#
DESCRIPTION
Given a PurePerformix(tm)-compatible mix table, mt2mc
produces a PurePerformix-compatible mix command file. If
no input files are specified, mt2mc reads from standard
input. Output is sent to standard output.
#
OPTIONS
-dtp time "Delta T Pause". If scripts are started and
then suspended, then there is a pre-test pause
of time seconds before they are resumed. The
default value of time is 60.
#
-dtr time "Delta T Resume". If scripts are suspended,
then after the pre-test pause (see -dtp), they
are resumed time seconds apart. Any other
scripts started after the pause also use this
time delay. The default value of time is 1.
#
-dts time "Delta T Start". Scripts started before the
pre-test pause (see -dtp) are separated by time
seconds. The default value of time is 1.
#
-mode number Operating mode. If number is 1, then a
standard mix command file is produced. If mode
is 2, then a shell script to time the scripts
is produced.
#
-nsu n|all "Number of Suspended Users". This specifes how
many users to start in a suspended state prior
to the actual start of the test. The default
value is "all".
#
-th time "Think high". Upper bound on randomly
distributed tink times. The default value is

A6
Appendix A Software Tools Developed for This Project

1.5 seconds.
#
-tl time "Think low". Lower bound on randomly
distributed tink times. The default value is
0.5 seconds.
#
-to time "Time out". Scripts will exit after time
seconds. The default value is 600 seconds.
#
-tr cps "Type rate". The default is 5 characters per
second.
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

CMD=`basename $0`
CMD_DIR=`dirname $0`
AWK1="$AWK"
AWK1="$AWK1 -f $CMD_DIR/prerr.awk"
AWK1="$AWK1 -f $CMD_DIR/randij.awk"
AWK1="$AWK1 -f $CMD_DIR/mt2mc.awk"
AWK1="$AWK1 X $*"
eval $AWK1

mt2mc.awk
#! /bin/awk -f
#---
#
NAME
mt2mc.awk (Mix Table To Mix Comands)
#
SYNOPSIS
[awk -f] mt2mc.awk X [-dtp time] [-dtr time]
[-dts time] [-mode number] [-nsu n|all] [-th time]
[-tl time] [-to time] [-tr cps] [file ...]
#
DESCRIPTION
mt2mc.awk produces a PurePerformix(tm)-compatible mix
command file given an PurePerformix mix table.
mt2mc.awk is usually invoked from the shell script
"wrapper" mt2mc.
#
OPTIONS
See mt2mc for a description of the options.
#
SEE ALSO
mt2mc
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

#---
#
FUNCTION
mt2mc_getargs
#
PURPOSE
To get input arguments off of the command line.
#

Appendix A Software Tools Developed for This Project A7

#---
function mt2mc_getargs(argc,i) {

 # Set default values for arguments.

DTP = 60
DTR = 1
DTS = 1
MODE = 1
NSU = "all"
TH = 1.5

 TL = 0.5
 TO = 600
 TR = 5

Process the arguments in the array ARGV.

argc = ARGC
ARGC = 1
for (i=2; i<argc; i++)

 if (ARGV[i] == "-dtp")
 DTP = ARGV[++i]
 else if (ARGV[i] == "-dtr")
 DTR = ARGV[++i]
 else if (ARGV[i] == "-dts")
 DTS = ARGV[++i]
 else if (ARGV[i] == "-mode")
 MODE = ARGV[++i]
 else if (ARGV[i] == "-nsu")
 NSU = ARGV[++i]
 else if (ARGV[i] == "-th")
 TH = ARGV[++i]
 else if (ARGV[i] == "-tl")
 TL = ARGV[++i]
 else if (ARGV[i] == "-to")
 TO = ARGV[++i]
 else if (ARGV[i] == "-tr")
 TR = ARGV[++i]
 else if (substr(ARGV[i],1,1) == "-" && length(ARGV[i])

>1)
 prerr("mt2mc: Invalid argument " ARGV[i])
 else
 ARGV[ARGC++] = ARGV[i]

 # Check for errors in the input arguments.

 if (DTP < 0)
 prerr("mt2mc: Argument dtp is invalid")
 if (DTR < 0)
 prerr("mt2mc: Argument dtr is invalid")
 if (DTS < 0)
 prerr("mt2mc: Argument dts is invalid")
 if (MODE < 1)
 prerr("mt2mc: Argument mode is invalid")
 if (NSU < 0)
 prerr("mt2mc: Argument nsu is invalid")
}

#---
#
FUNCTION
mt2mc_init
#
PURPOSE
To check for errors in the input arguments.
#
#---

A8
Appendix A Software Tools Developed for This Project

function mt2mc_init() {
}

#---
#
FUNCTION
mt2mc_mode1_begin
#
PURPOSE
Executed once inside BEGIN when mode = 1.
#
#---
function mt2mc_mode1_begin() {
}

#---
#
FUNCTION
mt2mc_mode1
#
PURPOSE
To process input lines in mode 1.
#
#---

function mt2mc_mode1() {
if ($1 != "+") {

 n_rte_users = n_rte_users + 1
 rte_user[n_rte_users] = substr($1, 1, length($1)-1)
 }
}

#---
#
FUNCTION
mt2mc_mode1_end
#
PURPOSE
Executed once inside END when mode = 1.
#
#---

function mt2mc_mode1_end() {
 if (NSU == "all" || NSU > n_rte_users)
 NSU = n_rte_users

 # Print mix command header.

 print "! echo Mix execution begins"
 print "use " FILENAME
 print "! gv_reset"
 print "! gv_init SUSPEND int 0"
 print "! gv_init TH double " TH
 print "! gv_init TL double " TL
 print "! gv_init TO int " TO
 print "! gv_init TR int " TR

 # Print these commands if some users are to be suspended.

 if (NSU > 0) {

 # Start users who will be suspended.

 print "! gv_write SUSPEND 1"

 if (NSU == n_rte_users) {

Appendix A Software Tools Developed for This Project A9

 print "set tstart " DTS
 print "start all"
 print "! echo All users started"
 } else {
 for (i_rte_user=1; i_rte_user<=NSU; i_rte_user++){
 print "pause " DTS
 print "start " rte_user[i_rte_user]
 }
 print "! echo " NSU " users started"
 }

 # Pre-test pause and reset suspend flag.

 print "pause " DTP
 print "! gv_write SUSPEND 0"
 print "! echo Benchmark test begins"

 # Resume all suspended users.

 if (NSU == n_rte_users) {
 print "set tresume " DTR
 print "resume all"
 print "! echo All users resumed"
 } else {
 for (i_rte_user=1; i_rte_user<=NSU; i_rte_user++) {
 print "pause " DTR
 print "resume " rte_user[i_rte_user]
 }
 print "! echo " NSU " users resumed"

}
}

 # If there are any other users, start them.

 if (n_rte_users > NSU) {
 if (NSU == 0) {
 print "set tstart " DTR
 print "start all"
 print "! echo All users started"
 } else {
 for (i_rte_user=NSU+1; i_rte_user<=n_rte_users; \
 i_rte_user++) {
 print "pause " DTR
 print "start " rte_user[i_rte_user]
 }
 print "! echo All remaining users started"

}
}

 # Wait until all users complete and then quit.

 print "wait"
 print "! echo Benchmark test ends"
 print "quit"
}

#---
#
FUNCTION
mt2mc_mode2_begin
#
PURPOSE
Executed once inside BEGIN when mode = 2.
#
#---

function mt2mc_mode2_begin() {

A10
Appendix A Software Tools Developed for This Project

 time_command = "timecmd "
 print "#! /bin/sh"
}

#---
#
FUNCTION
mt2mc_mode2
#
PURPOSE
To process input lines in mode 2.
#
#---

function mt2mc_mode2() {
 # Delete the user name or "+ sleep <n>".

 if ($1 != "+")
 sub(/^[^]*, */, "")
 else {
 sub(/^\+ +/, "")
 sub(/^sleep +[0-9]+ +/, "")
 }

 # Replace with the timing command.

 sub(/^/, time_command)
print $0

}

#---
#
FUNCTION
mt2mc_mode2_end
#
PURPOSE
Executed once inside END when mode = 2.
#
#---

function mt2mc_mode2_end() {
}

#---
#
ROUTINE
BEGIN
#
PURPOSE
Top level procedure invocations.
#
#---

BEGIN { # Initialization.
 mt2mc_getargs() # Process command line arguments.
 mt2mc_init() # Initialize variables.

 if (MODE == 1)
 mt2mc_mode1_begin()
 else
 mt2mc_mode2_begin()
}
{ # Performed once for every input line.
 if (MODE == 1)
 mt2mc_mode1()
 else

Appendix A Software Tools Developed for This Project A11

 mt2mc_mode2()
}
END { # Wrap up at end.
 if (error)
 exit
 else if (MODE == 1)
 mt2mc_mode1_end()
 else
 mt2mc_mode2_end()
}

mt2mt0
#! /bin/sh
#---
#
NAME
mt2mt0 (Mix Table to Mix Table Zero)
#
SYNOPSIS
mt2mt0 -suf file -uwf file [file ...]
#
DESCRIPTION
Given an PurePerformix(r)-compatible mix table for a
benchmark test, mt2mt0 produces a second mix table of
scripts which must be executed prior to the test in
order for the test scripts to execute correctly.
#
OPTIONS
-suf file Name of the script-user file. The first
field of sufile is a script name. Following
fields are user names which can execute that
script. Fields are separated by blanks or
tabs. Blank lines and comments (beginning
with "#" are ignored.
#
-uwf file Name of the user-work item file. The first
field field of uwfile is a username.
Following fields are work item codes owned
by that user. Fields are separated by blanks
or tabs. Blank lines and comments
(beginning with "#" are ignored.
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#

BUGS
This is not a general-purpose script. It will only
handle scripts specific to the CEFMS benchmark test as
developed at the U. S. Army Engineer Waterways
Experiment Station (WES) in Summer 1996.
#
#---

CMD=`basename $0`
CMD_DIR=`dirname $0`
AWK1="$AWK"
AWK1="$AWK1 -f $CMD_DIR/date.awk"
AWK1="$AWK1 -f $CMD_DIR/ltab.awk"
AWK1="$AWK1 -f $CMD_DIR/prerr.awk"
AWK1="$AWK1 -f $CMD_DIR/prmt.awk"
AWK1="$AWK1 -f $CMD_DIR/randij.awk"
AWK1="$AWK1 -f $CMD_DIR/mt2mt0.awk"

A12
Appendix A Software Tools Developed for This Project

AWK1="$AWK1 X $*"
eval $AWK1

mt2mt0.awk
#! /bin/awk -f
#---
#
NAME
mt2mt0.awk (Mix Table To Mix Table Zero)
#
SYNOPSIS
[awk -f] mt2mt0.awk X -suf file -uwf file [file ...]
#
DESCRIPTION
mt2mt0.awk produces a PurePerforix(tm)-compatible
preparatory mix table given a mix table to be used in a
benchmark test. mt2mt0.awk is usually invoked from the
shell script "wrapper" mt2mt0.
#
OPTIONS
See mt2mt0 for a description of the options.
#
SEE ALSO
mt2mt0
#
AUTHOR
William A. Ward, Jr.
#
BUGS
This is not a general-purpose script. It will only
handle scripts specific to the CEFMS benchmark test as
developed at the U. S. Army Engineer Waterways
Experiment Station (WES) in Summer 1996.
#
#---

#---
#
FUNCTION
mt2mt0_getargs
#
PURPOSE
To get input arguments off of the command line.
#
#---
function mt2mt0_getargs(argc,i) {

Process the arguments in the array ARGV.

 argc = ARGC
 ARGC = 1
 for (i=2; i<argc; i++)
 if (ARGV[i] == "-suf")
 SUF = ARGV[++i]
 else if (ARGV[i] == "-uwf")
 UWF = ARGV[++i]
 else if (substr(ARGV[i],1,1) == "-" && length(ARGV[i])

> 1)
 prerr("mt2mt0: Invalid argument " ARGV[i])
 else
 ARGV[ARGC++] = ARGV[i]

 # Check for errors in the input arguments.

Appendix A Software Tools Developed for This Project A13

 if (SUF == "")
 prerr("mt2mt0: Required argument suf not supplied")
 if (UWF == "")
 prerr("mt2mt0: Required argument uwf not supplied")
}

#---
#
FUNCTION
mt2mt0_date
#
PURPOSE
To construct date strings.
#
#---

function mt2mt0_date(n ,yyyymmdd) {

 yyyymmdd = date_n2yyyymmdd(n)
 return substr(yyyymmdd,7,2) \
 "-" tolower(substr(date_n2moty(substr(yyyymmdd,5,2)),1,3))\
 "-" substr(yyyymmdd,3,2)
}

#---
#
FUNCTION
mt2mt0_init
#
PURPOSE
To perform initialization of variables after argument
processing.
#
#---

function mt2mt0_init(n,yyyymmdd) {

 date_n2moty_init()
 date_n2yyyymmdd_init()
 date_yyyymmdd2n_init()
 "date +%Y%m%d" | getline yyyymmdd # yyyymmdd is current date
 n = date_yyyymmdd2n(yyyymmdd) # n is number of current day
 INPF[1,"torcreat"]=mt2mt0_date(n+365) # travel order depart

date
 INPF[2,"torcreat"]=mt2mt0_date(n+366) #travel order return

date
 INPF[1,"torcrevo"]=mt2mt0_date(n+1) #travel voucher depart

date
 INPF[2,"torcrevo"]=mt2mt0_date(n+2) #travel voucher return

date
}

#---
#
FUNCTION
mt2mt0_prmt
#
PURPOSE
To print one line of the preparatory mix table.
#
#---

function mt2mt0_prmt(script,port,user,inpf,outf,udif) {

 if (user == "") {
 do
 user = ltab_getval(SU_LTAB, script, "RANDOM")

A14
Appendix A Software Tools Developed for This Project

 while (index(udif, user))
 }
 prmt_line(script, port, user, "p", inpf, outf)
}

#---
#
FUNCTION
mt2mt0_mkinpf
#
PURPOSE
To make the input file for a script.
#
#---

function mt2mt0_mkinpf(inpf,field1,field2,field3,field4) {

 if (inpf != "") {
 inpf = inpf ".d"
 print field1 > inpf
 if (field2 != "") {
 print field2 >> inpf
 if (field3 != "") {
 print field3 >> inpf
 if (field4 != "")
 print field4 >> inpf
 }
 }
 close(inpf)
 }
}

#---
#
FUNCTION
mt2mt0_cor
#
PURPOSE
To process cor type scripts.
#
#---

function mt2mt0_cor(script,port,user,inpf \
 ,approver,corcreat_inpf,work_item) {

 if (script == "corcreat") {
 approver = ltab_getval(SU_LTAB, "corapprv", "RANDOM")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(inpf, work_item)

 } else if (script == "corapprv") {
 mt2mt0_prmt("corcreat", port, "", "", inpf)
 corcreat_inpf = prmt_query("inpf")
 approver = user
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(corcreat_inpf, work_item)

 } else if (script == "corcertf") {
 mt2mt0_prmt("corcreat", port, "", "", inpf)
 corcreat_inpf = prmt_query("inpf")
 mt2mt0_prmt("corapprv", port, "", inpf)
 approver = prmt_query("user")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(corcreat_inpf, work_item)

 } else if (script == "coraccpt") {

Appendix A Software Tools Developed for This Project A15

 mt2mt0_prmt("corcreat", port, "", "", inpf)
 corcreat_inpf = prmt_query("inpf")
 mt2mt0_prmt("corapprv", port, "", inpf)
 approver = prmt_query("user")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(corcreat_inpf, work_item)
 mt2mt0_prmt("corcertf", port, "", inpf)
 }
}

#---
#
FUNCTION
mt2mt0_cvo
#
PURPOSE
To process cvo type scripts.
#
#---

function mt2mt0_cvo(script,port,user,inpf \
 ,approver,cvocreat_inpf,work_item) {

 if (script == "cvocreat") {
 approver = ltab_getval(SU_LTAB, "cvocertf", "RANDOM")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(inpf, work_item)

 } else if (script == "cvocertf") {
 mt2mt0_prmt("cvocreat", port, "", "", inpf)
 cvocreat_inpf = prmt_query("inpf")
 approver = user
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(cvocreat_inpf, work_item)
 }
}

#---
#
FUNCTION
mt2mt0_lab
#
PURPOSE
To process lab type scripts.
#
#---

function mt2mt0_lab(script,port,user,inpf \
,approver,work_item) {

 if (script == "labcreat") {
 work_item = ltab_getval(UW_LTAB, user, "RANDOM")
 mt2mt0_mkinpf(inpf, work_item)

 } else if (script == "labctran") {
 # do nothing
 }
}

#---
#
FUNCTION
mt2mt0_prc
#
PURPOSE
To process prc type scripts.
#

A16
Appendix A Software Tools Developed for This Project

#---

function mt2mt0_prc(script,port,user,inpf \
 ,approver,prccreat_inpf,work_item) {

 if (script == "prccreat") {
 approver = ltab_getval(SU_LTAB, "prcapprv", "RANDOM")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(inpf, work_item)

 } else if (script == "prcapprv") {
 mt2mt0_prmt("prccreat", port, "", "", inpf)
 prccreat_inpf = prmt_query("inpf")
 approver = user
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(prccreat_inpf, work_item)

 } else if (script == "prccertf") {
 mt2mt0_prmt("prccreat", port, "", "", inpf)
 prccreat_inpf = prmt_query("inpf")
 mt2mt0_prmt("prcapprv", port, "", inpf)
 approver = prmt_query("user")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(prccreat_inpf, work_item)

 } else if (script == "prccreob") {
 mt2mt0_prmt("prccreat", port, "", "", inpf)
 prccreat_inpf = prmt_query("inpf")
 mt2mt0_prmt("prcapprv", port, "", inpf)
 approver = prmt_query("user")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(prccreat_inpf, work_item)
 mt2mt0_prmt("prccertf", port, "", inpf)

 } else if (script == "prcappob") {
 mt2mt0_prmt("prccreat", port, "", "", inpf)
 prccreat_inpf = prmt_query("inpf")
 mt2mt0_prmt("prcapprv", port, "", inpf)
 approver = prmt_query("user")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(prccreat_inpf, work_item)
 mt2mt0_prmt("prccertf", port, "", inpf)
 mt2mt0_prmt("prccreob", port, "", inpf)

 } else if (script == "prccrerr" || script == "prccrein") {
 mt2mt0_prmt("prccreat", port, "", "", inpf)
 prccreat_inpf = prmt_query("inpf")
 mt2mt0_prmt("prcapprv", port, "", inpf)
 approver = prmt_query("user")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(prccreat_inpf, work_item)
 mt2mt0_prmt("prccertf", port, "", inpf)
 mt2mt0_prmt("prccreob", port, "", inpf)
 mt2mt0_prmt("prcappob", port, "", inpf)
 }
}

#---
#
FUNCTION
mt2mt0_rep
#
PURPOSE
To process rep type scripts.
#
#---

Appendix A Software Tools Developed for This Project A17

function mt2mt0_rep(script,port,user,inpf \
) {

 if (script == "repa3953" || \
 script == "repcertl" || \
 script == "repcolds" || \
 script == "repmscdb" || \
 script == "reptmatt" || \
 script == "repvstat") {
 # do nothing

 } else if (script == "repa4445") {
 mt2mt0_mkinpf(inpf, 50)
 }
}

#---
#
FUNCTION
mt2mt0_tor
#
PURPOSE
To process tor type scripts.
#
#---

function mt2mt0_tor(script,port,user,inpf \
 ,approver,torcreat_inpf,udif,work_item) {

 if (script == "torcreat") {
 approver = ltab_getval(SU_LTAB, "torapprv", "RANDOM")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(inpf, work_item, \
 INPF[1,"torcreat"], INPF[2,"torcreat"])

 } else if (script == "torreque") {
 mt2mt0_prmt("torcreat", port, "", "", inpf)
 torcreat_inpf = prmt_query("inpf")
 approver = ltab_getval(SU_LTAB, "torapprv", "RANDOM")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(torcreat_inpf, work_item, \
 INPF[1,"torcreat"], INPF[2,"torcreat"])

 } else if (script == "torapprv") {
 mt2mt0_prmt("torcreat", port, "", "", inpf, user)
 torcreat_inpf = prmt_query("inpf")
 mt2mt0_prmt("torreque", port, "", inpf, "", user)
 approver = user
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(torcreat_inpf, work_item, \
 INPF[1,"torcreat"], INPF[2,"torcreat"])

 } else if (script == "torauthn") {
 mt2mt0_prmt("torcreat", port, "", "", inpf)
 torcreat_inpf = prmt_query("inpf")
 udif = prmt_query("user")
 mt2mt0_prmt("torreque", port, "", inpf)
 udif = udif " " prmt_query("user")
 mt2mt0_prmt("torapprv", port, "", inpf, "", udif)
 approver = prmt_query("user")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(torcreat_inpf, work_item, \
 INPF[1,"torcreat"], INPF[2,"torcreat"])

 } else if (script == "torcrevo") {
 mt2mt0_prmt("torcreat", port, user, "", inpf)
 torcreat_inpf = prmt_query("inpf")

A18
Appendix A Software Tools Developed for This Project

 mt2mt0_prmt("torreque", port, "", inpf)
 udif = user " " prmt_query("user")
 mt2mt0_prmt("torapprv", port, "", inpf, "", udif)
 approver = prmt_query("user")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(torcreat_inpf, work_item, \
 INPF[1,"torcrevo"], INPF[2,"torcrevo"])
 mt2mt0_prmt("torauthn", port, "", inpf)

 } else if (script == "torappvo") {
 mt2mt0_prmt("torcreat", port, "", "", inpf, user)
 torcreat_inpf = prmt_query("inpf")
 creator = prmt_query("user")
 udif = creator " " user
 mt2mt0_prmt("torreque", port, "", inpf, "", udif)
 mt2mt0_prmt("torapprv", port, user, inpf)
 work_item = ltab_getval(UW_LTAB, user, "RANDOM")
 mt2mt0_mkinpf(torcreat_inpf, work_item, \
 INPF[1,"torcrevo"], INPF[2,"torcrevo"])
 mt2mt0_prmt("torauthn", port, "", inpf)
 mt2mt0_prmt("torcrevo", port, creator, inpf)
 }
}

#---
#
FUNCTION
mt2mt0_trn
#
PURPOSE
To process trn type scripts.
#
#---

function mt2mt0_trn(script,port,user,inpf \
 ,approver,trncreat_inpf,work_item) {

 if (script == "trncreat") {
 approver = ltab_getval(SU_LTAB, "trnapprv", "RANDOM")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(inpf, work_item)

 } else if (script == "trnapprv") {
 mt2mt0_prmt("trncreat", port, "", "", inpf)
 trncreat_inpf = prmt_query("inpf")
 approver = user
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(trncreat_inpf, work_item)
 }
}

#---
#
FUNCTION
mt2mt0_vis
#
PURPOSE
To process vis type scripts.
#
#---
function mt2mt0_vis(script,port,user,inpf \
 ,approver,viscreat_inpf,work_item) {

 if (script == "viscreat") {
 approver = ltab_getval(SU_LTAB, "visapprv", "RANDOM")
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")

Appendix A Software Tools Developed for This Project A19

 mt2mt0_mkinpf(inpf, work_item)

 } else if (script == "visapprv") {
 mt2mt0_prmt("viscreat", port, "", "", inpf)
 viscreat_inpf = prmt_query("inpf")
 approver = user
 work_item = ltab_getval(UW_LTAB, approver, "RANDOM")
 mt2mt0_mkinpf(viscreat_inpf, work_item)
 }
}

#---
#
ROUTINE
BEGIN
#
PURPOSE
Executed before any input lines are read.
#
#---

BEGIN {
 mt2mt0_getargs() # Process command-line arguments.
 mt2mt0_init() # Initailize variables.
 ltab_build(SU_LTAB, SUF) # Build the script-user list.
 ltab_build(UW_LTAB, UWF) # Build the user-work item list.
}

#---
#
ROUTINE
Main input loop
#
PURPOSE
Performed for every input line.
#
#---

{
 # Load the fields from the mix table entry into variables;
 # the input file is assumed to be the last field.

 script = $(NF-4)
 port = $(NF-3)
 logf = $(NF-2)
 user = $(NF-1)
 inpf = $(NF)

 # If the first field is not a continuation line,
 # reset so that the next output line starts a new user.

 if ($1 != "+")
 prmt_reset()

 # Array mt2mt0_sc is used by mt2mt0_mmkinpf (called by END)
 # to create any remaining input files.

 mt2mt0_sc[script] = mt2mt0_sc[script] + 1

 # Use the first 3 chars of the script name to determine
 # what type of processing should be done.

 type = substr(script,1,3)
 if (type == "cor")
 mt2mt0_cor(script, port, user, inpf)
 else if (type == "cvo")
 mt2mt0_cvo(script, port, user, inpf)

A20
Appendix A Software Tools Developed for This Project

 else if (type == "lab")
 mt2mt0_lab(script, port, user, inpf)
 else if (type == "prc")
 mt2mt0_prc(script, port, user, inpf)
 else if (type == "rep")
 mt2mt0_rep(script, port, user, inpf)
 else if (type == "tor")
 mt2mt0_tor(script, port, user, inpf)
 else if (type == "trn")
 mt2mt0_trn(script, port, user, inpf)
 else if (type == "tvo")
 mt2mt0_tvo(script, port, user, inpf)
 else if (type == "vis")
 mt2mt0_vis(script, port, user, inpf)
}

#---
#
ROUTINE
END
#
PURPOSE
To wrap-up after all input lines have been read.
#
#---

END {
 if (error)
 exit
}

pa2pf
#! /bin/sh
#---
#
NAME
pa2pf (Process Accounting To Peaking Factor)
#
SYNOPSIS
pa2pf [-a h[:m[:s]]] [-b h[:m[:s]]] [-d h[:m[:s]]]
[-w h[:m[:s]]] [file ...]
#
DESCRIPTION
Process a pacct file to produce a peaking factor.
#
OPTIONS
-a h[:m[:s]] Start time in hours (:minutes (:seconds));
input data prior to this is ignored.
The default is 00:00:00.
#
-b h[:m[:s]] Stop time in hours (:minutes (:seconds));
input data after this is ignored.
The default is 24:00:00.
#
-d h[:m[:s]] Delta time in hours (:minutes (:seconds));
input data is grouped into chunks of this
size. The default is 00:01:00.
#
-w h[:m[:s]] Time window in hours (:minutes
(:seconds)); candidate peaking factors for
each possible windows of this size are
calculated to determine the maximum (i.e.,
the windows are (a,a+w),(a+d,a+d+w),

Appendix A Software Tools Developed for This Project A21

(a+2d,a+2d+w), ..., (b-w,b)). The default
is 01:00:00.
#
OPERANDS
file ... Path name of one or more input files. If no
files are specified, the standard input will be
read.
#
SEE ALSO
acctcom, wt2pf
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

CMD=`basename $0`
CMD_DIR=`dirname $0`
AWK1="$AWK"
AWK1="$AWK1 -f $CMD_DIR/prerr.awk"
AWK1="$AWK1 -f $CMD_DIR/date.awk"
AWK1="$AWK1 -f $CMD_DIR/pa2pf.awk"
AWK1="$AWK1 X $*"
eval $AWK1

pa2pf.awk
#! /bin/nawk -f
#---
#
NAME
pa2pf.awk
#
SYNOPSIS
[awk -f] pa2pf.awk X -a h[:m]] [-b h[:m]] [-d h[:m]]
[-w h[:m]] [file ...]
#
DESCRIPTION
pa2pf.awk processes a pacct file to produce a peaking
factor. pa2pf.awk is usually invoked from the shell
script "wrapper" pa2pf.
#
OPTIONS
See pa2pf for a description of the options.
#
SEE ALSO
acctcom, pa2pf, wt2pf
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

#---
#
FUNCTION
pa2pf_getargs
#
PURPOSE
To get input arguments off of the command line.
#
#---

function pa2pf_getargs(argc,i) {

A22
Appendix A Software Tools Developed for This Project

 # Set default values for arguments.

 A = "00:00:00"
 B = "24:00:00"
 D = "00:01:00"

W = "01:00:00"

 # Process the arguments in the array ARGV.

 argc = ARGC
 ARGC = 1
 for (i=2; i<argc; i++)
 if (ARGV[i] == "-a")
 A = ARGV[++i]
 else if (ARGV[i] == "-b")
 B = ARGV[++i]
 else if (ARGV[i] == "-d")
 D = ARGV[++i]
 else if (ARGV[i] == "-w")
 W = ARGV[++i]
 else if (substr(ARGV[i],1,1) == "-" && length(ARGV[i])

> 1)
 prerr("pa2pf: Invalid argument " ARGV[i])
 else
 ARGV[ARGC++] = ARGV[i]

 # Argument postprocessing

 TA = date_hms2s(A)
 TB = date_hms2s(B)
 TD = date_hms2s(D)
 TW = date_hms2s(W)

 # Check for errors in the input arguments.

 if (TA >= TB)
 prerr("pa2pf: Start time >= stop time")
 if (TW >= TB-TA)
 prerr("pa2pf: Window size > interval")
}

#---
#
FUNCTION
pa2pf_init
#
PURPOSE
To check for errors in the input arguments.
#
#---

function pa2pf_init(i) {
 getline
 if (NF == 0)
 getline
 if ($1 == "ACCOUNTING") {
 getline
 getline
 getline
 }
 pa2pf_main()
}

#---
#
FUNCTION

Appendix A Software Tools Developed for This Project A23

pa2pf_main
#
PURPOSE
Executed for every input line.
#
#---

function pa2pf_main() {

 # Fields 4 and 5 contain the start and stop time of the
process

 pa = date_hms2s($4)
 pb = date_hms2s($5)
 if (pa < PA_MIN)
 PA_MIN = pa
 if (pb > PB_MIN)
 PB_MAX = pb

 # Skip if out of range

 if (pb < TA || TB < pa) {
 # Do nothing
 } else {
 ia = int(pa / TD)
 ib = int(pb / TD)

 # Did the process start and stop
 # in the same time interval?

 if (ia == ib) {
 CPU_SEC[ia] = CPU_SEC[ia] + $7
 ta = 0
 tm = $7
 tb = 0

 # The process started and ended
 # in different time intervals

 } else {
 unit = $7 / (pb - pa)
 CPU_SEC[ia] = CPU_SEC[ia] + ((ia+1)*TD - pa)*unit
 for (i=ia+1; i<ib; i++)
 CPU_SEC[i] = CPU_SEC[i] + TD*unit
 CPU_SEC[ib] = CPU_SEC[ib] + (pb - ib*TD)*unit
 ta = ((ia+1)*TD - pa)*unit
 tm = (ib - ia - 1)*TD*unit
 tb = (pb - ib*TD)*unit
 }
 ts = ta + tm + tb
 #printf "%7.2f %7.2f %7.2f %7.2f %7.2f\n", ta, tm, tb,

ts, $7
 }
}

#---
#
FUNCTION
pa2pf_end
#
PURPOSE
Executed at end of program.
#
#---

function pa2pf_end(i,n) {
 ia = int(TA / TD)

A24
Appendix A Software Tools Developed for This Project

 ib = int(TB / TD)
 iw = int(TW / TD)
 for (i=ia; i<=ia+iw-1; i++)
 area = area + CPU_SEC[i]
 wmax = area
 wcur = area
 for (i=ia+iw; i<=ib; i++)
 area = area + CPU_SEC[i]
 for (i=ia; i<=ib-iw; i++) {
 wcur = wcur - CPU_SEC[i] + CPU_SEC[i+iw]
 if (wcur > wmax)
 wmax = wcur
 }
 wavg = area / (TB - TA)
 wmax = wmax / TW
 pf = wmax / wavg
 printf "%9.3f %9.3f %8.3f\n", wmax, wavg, pf
}

#---
#
ROUTINE
Main program.
#
PURPOSE
Top level procedure invocations.
#
#---

BEGIN { # Initialization.
pa2pf_getargs() # Process command-line arguments.

 pa2pf_init() # Initialize variables.
}
{ # Performed once for each input line.

pa2pf_main()
}
END { # Wrap up at end.
 if (error)
 exit
 pa2pf_end()
}

sc2mt
#! /bin/sh
#---
#
NAME
sc2mt (Script Count To Mix Table)
#
SYNOPSIS
sc2mt [-mode number] [-nspu number] [-nu number] [-suf

file]
[-sut host] [file ...]
#
DESCRIPTION
Given a list of script names and counts, sc2mt produces
a PurePerformix(tm)-compatible mix table.
#
Each line of input contains a script name and a count
specifying how many times each script is to executed
in the RTE-driven test.
#
OPTIONS

Appendix A Software Tools Developed for This Project A25

-mode number If number = 1, the input script counts are
used to determine how many times each
ecript is executed. If number = 2, the
input script counts are ignored and each
script is executed once by each valid
username in the script-user file.
#
-nspu number Number of scripts per (emulated) user.
Let ns and nu denote the number of scripts
and number of users respectively; then nu
= ns / nspu. If both-nspu and -nu are
specified, -nu takes precedence. The
default value of nspu is 1.
#
-nu number Number of (emulated) users. Let ns and
nspu denote the number of scripts and
number of scripts per (emulated) user
respectively; then nspu = ns / nu. If
both -nspu and -nu are specified, -nu
takes precedence. The default value of nu
is ns.
#
-suf file Name of the script user file. The first
field of sufile is a script name.
Following fields are user names which can
execute that script. Fields are separated
by blanks or tabs. Blank lines and
comments (beginning with "#" are ignored.
#
-sut host Hostname or IP number of the system under
test. The default value of host is
"localhost".
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

CMD=`basename $0`
CMD_DIR=`dirname $0`
AWK1="$AWK"
AWK1="$AWK1 -f $CMD_DIR/prerr.awk"
AWK1="$AWK1 -f $CMD_DIR/prmt.awk"
AWK1="$AWK1 -f $CMD_DIR/randij.awk"
AWK1="$AWK1 -f $CMD_DIR/ltab.awk"
AWK1="$AWK1 -f $CMD_DIR/sc2mt.awk"
AWK1="$AWK1 X $*"
eval $AWK1

sc2mt.awk
#! /bin/nawk -f
#---
#
NAME
sc2mt.awk
#
SYNOPSIS
[awk -f] sc2mt.awk X [-mode number] [-nspu number]
[-nu number] -suf file [-sut host] [file ...]
#
DESCRIPTION
sc2mt.awk produces a PurePerformix(tm)-compatible mix
table using one or more files of script counts.sc2mt.awk
is usually invoked from the shell script "wrapper"

A26
Appendix A Software Tools Developed for This Project

sc2mt.
#
OPTIONS
See sc2mt for a description of the options.
#
SEE ALSO
sc2mt
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

#---
#
FUNCTION
sc2mt_getargs
#
PURPOSE
To get input arguments off of the command line.
#
#---

function sc2mt_getargs(argc,i) {

 # Set default values for arguments.

 MODE = 1
 NSPU = 1
 NU = 0
 SUT = "localhost"

 # Process the arguments in the array ARGV.

 argc = ARGC
 ARGC = 1
 for (i=2; i<argc; i++)
 if (ARGV[i] == "-mode")
 MODE = ARGV[++i]
 else if (ARGV[i] == "-nspu")
 NSPU = ARGV[++i]
 else if (ARGV[i] == "-nu")
 NU = ARGV[++i]
 else if (ARGV[i] == "-suf")
 SUF = ARGV[++i]
 else if (ARGV[i] == "-sut")
 SUT = ARGV[++i]
 else if (substr(ARGV[i],1,1) == "-" && length(ARGV[i])

> 1)
 prerr("sc2mt: Invalid argument " ARGV[i])
 else
 ARGV[ARGC++] = ARGV[i]

 # Check for errors in the input arguments.

 if (MODE < 1)
 prerr("sc2mt: Argument mode is invalid")
 if (NSPU < 1)
 prerr("sc2mt: Argument nspu is invalid")
 if (NU < 0)
 prerr("sc2mt: Argument nu is invalid")
 if (SUF == "")
 prerr("sc2mt: Required argument suf not supplied")
}

#---

Appendix A Software Tools Developed for This Project A27

#
FUNCTION
sc2mt_init
#
PURPOSE
To check for errors in the input arguments.
#
#---

function sc2mt_init(pid) {
 MAX_SEQ = 999999999
 NS = 0
 "echo $$" | getline pid
 TMP_FILE = "/tmp/sc2mt." pid
 TMP_FMT = "%s %s %9.9d\n"
 system("rm -f " TMP_FILE)
}

#---
#
FUNCTION
sc2mt_mode1
#
PURPOSE
Executed for every input line when in mode 1. In
mode 2, the number of mix table entries for this script
is the script count ($2) from the input file.
#
#---

function sc2mt_mode1(j,n,script,seqn,user) {
 script = $1
 n = $2
 for (j=1 ; j<=n ; j++) {
 NS = NS + 1
 user = ltab_getval(SU_LTAB, script, "RANDOM")
 seqn = randij(1, MAX_SEQ)
 printf TMP_FMT, script, user, seqn >> TMP_FILE
 }
}

#---
#
FUNCTION
sc2mt_mode2
#
PURPOSE
Executed for every input line when in mode 2. In
mode 2, there is one mix table entry for each valid
script user and the script execution order is mot
randomized.
#
#---

function sc2mt_mode2(j,n,script,seqn,user) {
 script = $1
 n = ltab_getval(SU_LTAB, script, "NCOLS")
 for(j=1 ; j<=n ; j++) {
 NS = NS + 1
 user = ltab_getval(SU_LTAB, script, j)
 seqn = randij(1, MAX_SEQ)
 printf TMP_FMT, script, user, seqn >> TMP_FILE
 }
}

#---
#

A28
Appendix A Software Tools Developed for This Project

FUNCTION
sc2mt_end
#
PURPOSE
Executed once inside END when MODE = 2.
#
#---

function sc2mt_end(command,i_script,port,rspu) {
 # If specified, -nu overrides -nspu
 # rspu is number of remaining extra scripts after
 # NSPU scripts have been assigned to each rte user.

 if (NU > 0) {
 NSPU = int(NS / NU) + 1
 rspu = NS % NU
 } else {
 NU = int(NS / NSPU)
 rspu = -1
 }

 # i_script counts scripts for a single rte user.

 i_script = NSPU + 1

 # Sort the temp file by sequence number & read from it until
eof.

 port = "telnet:" SUT
 command = "sort -n -k 3 " TMP_FILE

 while (command | getline) {

 # If enough scripts have been entered in the mix table
 # for this rte user, correct NSPU if the extra scripts
 # are gone and set the counters for the next rte user.

 if (i_script > NSPU) {
 i_script = 1
 prmt_reset()
 if (rspu == 0)
 NSPU = NSPU - 1
 rspu = rspu - 1
 }

 # Write the next line in the mix table.

 prmt_line($1,port,$2,"t")
 i_script = i_script + 1

}

Remove the temporary file.

 system("rm -f " TMP_FILE)
}

#---
#
ROUTINE
Main program
#
PURPOSE
Top level procedure invocations.
#
#---

Appendix A Software Tools Developed for This Project A29

BEGIN { # Initialization.
 sc2mt_getargs() # Process command-line arguments.
 sc2mt_init() # Initialize variables.
 ltab_build(SU_LTAB, SUF) # Build the script-user list.
}
{ # Repeated for each input line.
 if (MODE == 1)
 sc2mt_mode1()
 else
 sc2mt_mode2()
}
END { # Wrap up at end.
 if (error)
 exit
 sc2mt_end()
}

tc2sc
#! /bin/sh
#---
#
NAME
tc2sc (Transaction Count To Script Count)
#
SYNOPSIS
tc2sc [-ed yyyymdd] [-hpd number] [-hpt number]
[-iw] [-ot type] [-pf number] [-sff file] [file

...]
#
DESCRIPTION
tc2sc.awk produces script counts using one or more files
of transaction counts. tc2sc is a shell script "wrapper"
for tc2sc.awk.
#
OPTIONS
-ed yyyymmdd Exclude date from calculations; may appear
multiple times.
#
-hpd number Hours per day. Default is 24.
#
-hpt number Hours per test. Default is 1.
#
-iw Include weekend days in calculations.
Default is to not include weekends.
#
-ot type Output type; legal values are "long",
"short","avg", "1sd", "2sd" (default), and
"max".
#
-pf number Peaking factor. Default value is 1.
#
-sff file Scale factor file. Scale factors are set
to 1 if file not specified.
#
file ... Script names are assumed to be the names
of these files, less the suffix.
#
SEE ALSO
tc2sc.awk
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

A30
Appendix A Software Tools Developed for This Project

CMD=`basename $0`
CMD_DIR=`dirname $0`
AWK1="$AWK"
AWK1="$AWK1 -f $CMD_DIR/date.awk"
AWK1="$AWK1 -f $CMD_DIR/fmthdg.awk"
AWK1="$AWK1 -f $CMD_DIR/insert.awk"
AWK1="$AWK1 -f $CMD_DIR/prerr.awk"
AWK1="$AWK1 -f $CMD_DIR/prttab.awk"
AWK1="$AWK1 -f $CMD_DIR/tc2sc.awk"
AWK1="$AWK1 X $*"
eval $AWK1

tc2sc.awk
#! /bin/nawk -f
#---
#
NAME
tc2sc.awk
#
SYNOPSIS
[nawk -f] tc2sc.awk X [-ed yyyymdd][-hpd number][-hpt

number]
[-iw] [-ot type] [-pf number] [-sff file] [file

...]
#
DESCRIPTION
tc2sc.awk produces script counts using one or more files
of transaction counts. tc2sc.awk is usually invoked
from the shell script "wrapper" tc2sc.
#
OPTIONS
See tc2sc for a description of the options.
#
SEE ALSO
tc2sc
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

#---
#
FUNCTION
tc2sc_getargs
#
PURPOSE
To get input arguments off of the command line.
#
#---

function tc2sc_getargs(argc,i) {

 # Set default values for arguments.

 IW = 0
 HPD = 24
 HPT = 1
 OT = "2sd"
 PF = 1.0
 SFF = ""

 # Process the arguments in the array ARGV.

Appendix A Software Tools Developed for This Project A31

 argc = ARGC
 ARGC = 1
 for (i=2; i<argc; i++)
 if (ARGV[i] == "-ed")
 ED = ED " " ARGV[++i]
 else if (ARGV[i] == "-hpd")
 HPD = ARGV[++i]
 else if (ARGV[i] == "-hpt")
 HPT = ARGV[++i]
 else if (ARGV[i] == "-iw")
 IW = 1
 else if (ARGV[i] == "-ot")
 OT = ARGV[++i]
 else if (ARGV[i] == "-pf")
 PF = ARGV[++i]
 else if (ARGV[i] == "-sff")
 SFF = ARGV[++i]
 else if (substr(ARGV[i],1,1) == "-" && length(ARGV[i])

> 1)
 prerr("tc2sc: Invalid argument " ARGV[i])
 else
 ARGV[ARGC++] = ARGV[i]

 # Check for errors in the input arguments.

 if (HPD < 0 || HPD > 24)
 prerr("tc2sc: Argument hpd is invalid")
 if (HPT < 0 || HPT > 24)
 prerr("tc2sc: Argument hpt is invalid")
}

#---
#
FUNCTION
tc2sc_init
#
PURPOSE
To check for errors in the input arguments.
#
#---

function tc2sc_init() {
 # Initialize various parameters for calculating

 statistics

 n_typ = 0
 n_ymd = 0
 sf[0] = 0
 typ[0] = ""
 typ_exists[0] = ""
 ymd[0] = ""
 ymd_exists[0] = ""

 # Initialization for date functions

 date_moty2mm_init()
 date_yyyymmdd2n_init()
 date_n2dotw_init()
}

#---
#
FUNCTION
tc2sc_calcsf
#
PURPOSE
Calculate scale factors for each transaction type.

A32
Appendix A Software Tools Developed for This Project

The default scale factor is the product of the peaking
factor and the ratio of the test duration to the
length of the day. This default may be modified
using values from the scale factor file.
#
#---

function tc2sc_calcsf(peaking_factor,hours_per_day,hours_per_test,
 scale_factor_file,sf, i,t) {

 t = peaking_factor * date_hm2m(hours_per_test) \
 / date_hm2m(hours_per_day)
 for (i in typ_exists)
 sf[i] = t

 if (scale_factor_file != "") {
 while (getline < scale_factor_file > 0)
 sf[$1] = sf[$1] * $2
 }
}

#---
#
FUNCTION
tc2sc_
#
PURPOSE
#
#---

function tc2sc_() {
}

#---
#
FUNCTION
tc2sc_end
#
PURPOSE
#
#---

function tc2sc_end() {
}

#---
#
ROUTINE
Main program
#
PURPOSE
Top level procedure invocations.
#
#---

BEGIN { # Initialization.
 tc2sc_getargs() # Process command-line arguments.
 tc2sc_init() # Initialize variables.
}
{
 # Skip lines for which positions 4-6 are not a month name

 mm = date_moty2mm(substr($1,4,3))
 if (mm <= 0)
 next

Appendix A Software Tools Developed for This Project A33

 # Convert dd-MMM-yy to yyyymmdd format

 yyyymmdd = date_yy2yyyy(substr($1,8,2)) mm substr($1,1,2)

 # If weekends should be excluded and this is a weekend day,
 # skip this transaction

 if (! IW) {

 # If necessary, calculate day of the week from day

 if (! (yyyymmdd in dotw))
 dotw[yyyymmdd] = substr(\
 date_n2dotw(date_yyyymmdd2n(yyyymmdd)), 1,3)
 if (dotw[yyyymmdd]=="Sun" || dotw[yyyymmdd]=="Sat")
 next

}

 # If this date should be excluded, skip this transaction

 if (index(ED, yyyymmdd))
 next

 # Get transaction type from file name

 if (FILENAME != prev_file) {
 trans_type = FILENAME
 gsub(/^.*\//, "", trans_type) # Delete dir string
 gsub(/\.[^.]*$/, "", trans_type) # Delete suffix
 prev_file = FILENAME
 }

 # Update lists and accumulate total trans count

 n_typ = insert(trans_type,typ,n_typ,typ_exists)
 n_ymd = insert(yyyymmdd,ymd,n_ymd,ymd_exists)
 cnt[trans_type,yyyymmdd] = cnt[trans_type,yyyymmdd] + $2
}

END {
 # Initialize various parameters for displaying results

 j_grp = 10
 cnt_fmt_wid = 7
 typ_hdg_len = 80 - j_grp * cnt_fmt_wid - 2
 cnt["FORMAT"] = "%" cnt_fmt_wid "d"
 typ_hdg["FORMAT"] = "%-" typ_hdg_len "s "
 ymd_hdg["FORMAT"] = "%" cnt_fmt_wid "s"
 sc_fmt = "%-8s %" cnt_fmt_wid "d\n"

 tc2sc_calcsf(PF,HPD,HPT,SFF,sf)

 ymd[n_ymd+1] = "total";
 ymd[n_ymd+2] = "avg";
 ymd[n_ymd+3] = "std dev";
 ymd[n_ymd+4] = "max";
 ymd[n_ymd+5] = "avg test";
 ymd[n_ymd+6] = "1sd test";
 ymd[n_ymd+7] = "2sd test";
 ymd[n_ymd+8] = "max test";
 j_end = n_ymd + 8;

 # Calculate statistics for each trans type

 for (i=1; i<=n_typ; i=i+1) {
 sum = 0;
 ssq = 0;

A34
Appendix A Software Tools Developed for This Project

 max = 0;
 for (j=1; j<=n_ymd; j=j+1) {
 cij = cnt[typ[i],ymd[j]];
 sum = sum + cij;
 ssq = ssq + cij*cij;
 if (cij > max)
 max = cij;
 }
 avg = sum / n_ymd;
 dev = sqrt((ssq - sum*sum/n_ymd) / (n_ymd-1));
 cnt[typ[i],"total"] = sum;
 cnt[typ[i],"avg"] = avg;
 cnt[typ[i],"std dev"] = dev;
 cnt[typ[i],"max"] = max;
 cnt[typ[i],"avg test"] = sf[typ[i]] * avg;
 cnt[typ[i],"1sd test"] = sf[typ[i]] * (avg + dev);
 cnt[typ[i],"2sd test"] = sf[typ[i]] * (avg + 2*dev);
 cnt[typ[i],"max test"] = sf[typ[i]] * max;

}

 # Calculate total trans count for each day
 # and find day with max trans count

 jmax = 1;
 for (j=1; j<=j_end; j=j+1) {
 sum = 0;
 for (i=1; i<=n_typ; i=i+1)
 sum = sum + cnt[typ[i],ymd[j]];
 cnt["total",ymd[j]] = sum;
 if (j <= n_ymd && sum > cnt["total",ymd[jmax]])
 jmax = j;
 }
 j_end = j_end + 1;
 ymd[j_end] = "day test";

 # Calculate iterations of each trans type
 # for a test period of the specified length
 # which corresponds to the day with the maximum trans count

 sum = 0;
 for (i=1; i<=n_typ; i=i+1) {
 cnt[typ[i],ymd[j_end]] = sf[typ[i]] *

cnt[typ[i],ymd[jmax]];
 sum = sum + cnt[typ[i],ymd[j_end]];
 }
 cnt["total",ymd[j_end]] = sum;
 typ[n_typ+1] = "total";
 n_row = n_typ + 1;

 # If the output type is "long" or "short"
 # then set the starting point in the array to begin printing
 # else print scenario counts for each type and exit

 if (OT == "long")
 j_beg = 1
 else if (OT == "short")
 j_beg = n_ymd + 1;
 else {
 j = OT " test"
 for (i=1; i<=n_typ; i=i+1)
 printf sc_fmt, typ[i], cnt[typ[i],j] + 0.5
 exit
 }

 for (i=1; i<=n_row; i=i+1)
 typ_hdg[i] = substr(typ[i], 1, typ_hdg_len);

Appendix A Software Tools Developed for This Project A35

for (j=1; j<=n_ymd; j=j+1)
 ymd_str[j] = substr(ymd[j],1,4) \
 " " substr(ymd[j],5,2) \
 " " substr(ymd[j],7,2) \
 " " substr(date_n2dotw(date_yyyymmdd2n(ymd[j])),

1,3)
 for (j=n_ymd+1; j<=j_end; j=j+1)
 ymd_str[j] = ymd[j];

max_hdg = fmthdg(ymd_str,j_beg,j_end,ymd_hdg);
row_brk["total"] = 0;
col_brk["total"] = 0;

 # Loop over column groups

 prttab(cnt,typ,ymd,typ_hdg,ymd_hdg,row_brk,col_brk, \
 1,n_row,j_beg,j_end,j_grp,max_hdg)
}

wt2pf
#! /bin/sh
#---

#
NAME
wt2pf (WTmpx To Peaking Factor)
#
SYNOPSIS
wt2pf [-a h[:m]] [-b h[:m]] [-w h[:m]] [file ...]
#
DESCRIPTION
Process a wtmpx file (containing user login data) to
produce a peaking factor. Unlike pa2pf, no delta value
may be supplied; the bucket size is always 1 minute.
#
OPTIONS
-a h[:m] Start time in hours (:minutes); input data
prior to this is ignored. The default is
00:00.
#
-b h[:m] Stop time in hours (:minutes); input data
after this is ignored. The default is 24:00.
#
-w h[:m] Time window in hours (:minutes); candidate
peaking factors for each possible window of
this size are calculated to determine the
maximum (i.e., windows are (a,a+w),
(a+d,a+d+w), (a+2d,a+2d+w) ..., (b-w,b)). The
default is 01:00.
#
OPERANDS
file ... Path name of one or more input files. If no
files are specified, the standard input will
be read.
#
SEE ALSO
last, pa2pf
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

CMD=`basename $0`

A36
Appendix A Software Tools Developed for This Project

CMD_DIR=`dirname $0`
AWK1="$AWK"
AWK1="$AWK1 -f $CMD_DIR/prerr.awk"
AWK1="$AWK1 -f $CMD_DIR/date.awk"
AWK1="$AWK1 -f $CMD_DIR/wt2pf.awk"
AWK1="$AWK1 X $*"
eval $AWK1

wt2pf.awk
#! /bin/nawk -f
#---
#
NAME
wt2pf.awk
#
SYNOPSIS
[awk -f] wt2pf.awk X [-a h[:m]] [-b h[:m]] [-w h[:m]]
[file ...]
#
DESCRIPTION
wt2pf.awk processes a wtmpx file to produce a peaking

factor.
wt2pf.awk is usually invoked from the shell script

"wrapper"
wt2pf.
#
OPTIONS
See wt2pf for a description of the options.
#
SEE ALSO
last, pa2pf, wt2pf
#
AUTHOR
William A. Ward, Jr., University of South Alabama.
#
#---

#---
#
FUNCTION
wt2pf_getargs
#
PURPOSE
To get input arguments off of the command line.
#
#---

function wt2pf_getargs(argc,i) {

Set default values for arguments.

 A = "00:00"
 B = "24:00"
 D = "00:01"
 W = "01:00"

 # Process the arguments in the array ARGV.

 argc = ARGC
 ARGC = 1
 for (i=2; i<argc; i++)
 if (ARGV[i] == "-a")
 A = ARGV[++i]

Appendix A Software Tools Developed for This Project A37

else if (ARGV[i] == "-b")
 B = ARGV[++i]

else if (ARGV[i] == "-w")
 W = ARGV[++i]

else if (substr(ARGV[i],1,1) == "-" && length(ARGV[i])
> 1)

 prerr("wt2pf: Invalid argument " ARGV[i])
 else
 ARGV[ARGC++] = ARGV[i]

Argument postprocessing

 TA = date_hm2m(A)
 TB = date_hm2m(B)
 TW = date_hm2m(W)

 # Check for errors in the input arguments.

 if (TA >= TB)
 prerr("wt2pf: Start time >= stop time")
 if (TW > TB-TA)
 prerr("wt2pf: Window size > interval")
}

#---
#
FUNCTION
wt2pf_init
#
PURPOSE
To check for errors in the input arguments.
#
#---

function wt2pf_init(i) {
}

#---
#
FUNCTION
wt2pf_main
#
PURPOSE
Executed for every input line.
#
#---

function wt2pf_main() {

Ignore the last two lines of the wtmpx file.

if ($1=="" || $1=="wtmp") {
 # Do nothing.

Pseudouser "reboot" is handled explicitly.

 } else if ($1 == "reboot") {
 i = date_hm2m($7)
 N_USERS[i] = "reboot"

 # Field 1 is a valid login ID.

 } else {
 # A blank in column 24 indicates that the terminal

for the login session was unknown, and so the
login time is in ld numbers are one less.

A38
Appendix A Software Tools Developed for This Project

if (substr($0, 24, 1) == " ")
i = 6

 else
 i = 7
 m = date_hm2m($i)
 N_USERS[m] = N_USERS[m] + 1

 # Unless the user was still logged when the wtmpx
 # file was written or was logged out because the
 # system went down, print an output record for the
 # user logout

 if ($(i+2) != "logged" && $(i+2) != "down") {
 m = date_hm2m($(i+2))
 N_USERS[m] = N_USERS[m] - 1
 }

}
}

#---
#
FUNCTION
wt2pf_end
#
PURPOSE
Executed at end of program.
#
#---

function wt2pf_end(i,n) {
for (i=0; i<1440; i++) {

 if (N_USERS[i]=="reboot")
 N_USERS[i] = 0

else
 N_USERS[i] = N_USERS[i] + N_USERS[i-1]
 }

 ia = int(TA)
 ib = int(TB)
 iw = int(TW)
 for (i=ia; i<=ia+iw-1; i++)
 area = area + N_USERS[i]
 wmax = area
 wcur = area
 for (i=ia+iw; i<=ib; i++)
 area = area + N_USERS[i]
 for (i=ia; i<=ib-iw; i++) {
 wcur = wcur - N_USERS[i] + N_USERS[i+iw]
 if (wcur > wmax)
 wmax = wcur
 }
 wavg = area / (TB - TA)
 wmax = wmax / TW
 pf = wmax / wavg
 printf "%9.3f %9.3f %8.3f\n", wmax, wavg, pf
}

#---
#
ROUTINE
Main program.
#
PURPOSE
Top level procedure invocations.
#
#---

Appendix A Software Tools Developed for This Project A39

BEGIN { # Initialization.
wt2pf_getargs() # Process command-line arguments.
wt2pf_init() # Initialize variables.

}
{ # Performed once for each input
line.

wt2pf_main()
}
END { # Wrap up at end.
 if (error)
 exit
 wt2pf_end()
}

Appendix B Included Files B1

Appendix B
Included Files

This appendix contains C header files which are included in the scripts.
They served to speed script development and promote script uniformity.

common_decl.h

/*--*/
/* */
/* NAME */
/* common_decl.h */
/* */
/* DESCRIPTION */
/* Contains preprocessor definitions and declarations */
/* common to all scripts. */
/* */
/*--*/

/* Define standard prompt string. */

#define PROMPT "}% "

/* Declarations for global variables. */

int suspend; /* 1 to suspend a script, 0 otherwise. */
double think_high; /* Upper bound on randomly distributed

think times. */
double think_low; /* Lower bound on randomly distributed

think times. */
int time_out; /* Scripts terminate after this many

seconds. */
int type_rate; /* Type rate in characters per second. */

/* The following variables are used for processing input
arguments. */

char argv2[40]; /* Log file name - used for invcreat */
char argv4[40]; /* Input file name. */
char argv5[40]; /* Output file name. */
char input[10][40]; /* Input arguments read from the input

file. */

/* Miscellaneous variables. */

B2
Appendix B Included Files

char command[40]; /* Used by common_input to test for file
existence. */

int i, j, k, l, m, n; /* Miscellaneous variables for loops. */
int viscreat=0; /* Used by common_print to signal running

viscreat. */
char prc_number[40]; /* Should use one number variable for all

of these. */
char tor_number[40];
char cvo_number[40];
char inv_number[5]; /* Invoice number used in INVCREAT */

common_gvread.h
/*--*/
/* */
/* NAME */
/* common_gvread.h */
/* */
/* DESCRIPTION */
/* Read global variables and use them to initialize */
/* parameters common to all scripts. */
/* */
/*--*/

suspend = Gv_read("SUSPEND"); /* Read the suspend flag */
Gv_readv("TH", &think_high); /* Read the maximum think time */
Gv_readv("TL", &think_low); /* Read the minimum think time */
time_out = Gv_read("TO"); /* Read the time-out time for

hung scripts */
type_rate = Gv_read("TR"); /* Read the type rate */

common_input.h
/*--*/
/* */
/* NAME */
/* common_input.h */
/* */
/* DESCRIPTION */
/* All scripts use this code to read their input file. */
/* The input file is command line argument four. */
/* */
/*--*/

/* Process command line argument 4 (the input file name) */

if (argc < 5)
 /* If argv[4] is absent set argv4 to null. */

 argv4[0] = '\0';
else {
 /* Build the file name in argv4 and log it. */
 strcpy(argv4, argv[4]);
 strcat(argv4, ".d\0");
 /* Build the command to test for file existence. */

 strcpy(command, "test -f \0");
 strcat(command, argv4);
 Log(command);

 /* If the file exists, open it and begin reading. */
 if (system(command) == 0) {

Appendix B Included Files B3

 Fioopen(argv4, "r");
 i=0;
 do {
 Fioreadline(argv4);
 strcpy(input[i], FIOBUFFER);
 strcat(input[i], "\0");
 Log(input[i]);
 i++;
 } while(FIOLEN >= 0);
 Fioclose(argv4);

}
}

/* Process command line argument 5 (the output file name) */

if (argc < 6)
argv5[0] = '\0';

else {
strcpy (argv5, argv[5]);

 strcat (argv5, ".d\0");
}

common_login.h
/*--*/
/* */
/* NAME */
/* common_login.h */
/* */
/* DESCRIPTION */
/* Execute the standard UNIX login sequence, but */
/* take into account idiosyncrasies of CEAP machines. */
/* */
/*--*/

/* Standard login sequence ("login: " printed by system) */

Rcv("login: ");
Kxmit(argv[3], K_ENTER);
Rcv("Password: ");
Kxmit("please", K_ENTER);
i = Mrcv(PROMPT, "(y or n)? ", "% ", "Login incorrect", "");

/* Gracefully exit if password is wrong */

if (i == 3) exit(0);

/* Login sequence failed; user reenters "login". */

j=0;
while (i == 2) {
 if (j++ == 5) exit(0);
 Kxmit("login", K_ENTER);
 Rcv("login: ");
 Kxmit(argv[3], K_ENTER);
 Rcv("Password: ");
 Kxmit("please", K_ENTER);
 i = Mrcv(PROMPT, "(y or n)? ", "% ", "");
}
/* System queries for multiple sessions (respond "no"). */

while (i == 1) {
 Kxmit("n", K_ENTER);
 i = Mrcv(PROMPT, "(y or n)? ", "");
}

B4
Appendix B Included Files

common_logout.h
/*--*/
/* */
/* NAME */
/* common_logout.h */
/* */
/* DESCRIPTION */
/* Execute standard logout sequence. */
/* */
/*--*/

/* Exit last CEFMS menu */

Begintransaction("enter");
Kxmit("1", K_ENTER);
/*
;1m^[[2J^O^[[0;44;37;1m^[[?1l^[>^[[m^[[2Jcpc25:/wes/u4imcjch{52}%
*/
Rcv(PROMPT);
Endtransaction("enter");

/* Logout from host */

Kxmit("logout", K_ENTER);
/* logout^M^J ^M^J You have now logged off cpc25.... ^M^J ^M^J */
Wait(2);

common_rte.h
/*--*/
/* */
/* NAME */
/* common_rte.h */
/* */
/* DESCRIPTION */
/* These are the standard function calls generated by */
/* compose at the beginning of every script. */
/* */
/*--*/

Seed(getpid()); /* Seed random number
generator */

Set(CDELAY); /* Put typing delay between
chars. */

Term(ZOOM, VT220|LINES24|AUTOWRAP); /* Enable zoom & set term
type. */

Thinkuniform(think_low,think_high); /* Think delay at every
Xmit() */

Timeout(time_out,EXIT); /* What to do if Rcv()
takes too long */

Typerate(type_rate); /* Typing delay in CPS */
Unset(NOTIFY); /* Don't display warnings

(use Mon) */

Appendix B Included Files B5

common_start.h
/*--*/
/* */
/* NAME */
/* common_start.h */
/* */
/* DESCRIPTION */
/* Include all the required include files; placed */
/* at the beginning of every script. */
/* */
/*--*/

#include "common_gvread.h"
#include "common_rte.h"
#include "common_input.h"
#include "common_login.h"
#include "common_suspend.h"

common_suspend.h
/*--*/
/* */
/* NAME */
/* common_suspend.h */
/* */
/* DESCRIPTION */
/* Suspend code to be included in every script. */
/* */
/*--*/

if (suspend)
Suspend();

common_tms.h
/*--*/
/* */
/* NAME */
/* common_tms.h */
/* */
/* DESCRIPTION */
/* Enter the CEFMS database. If the attempt fails, */
/* retry as long as the UNIX C shell prompt is received. */
/* */
/*--*/

/* Kxmit("tms", K_ENTER); */
/* qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqj^[[24;1H^OCount:
*0^[[17;51H */
/* Rcv("t: *0^[[17;51H"); */

/* Build the "tms" command to enter CEFMS */

strcpy(command, "tms\0");
/*if (strlen(argv[2]) == 14) {
 command[3] = ' ';
 command[4] = argv[2][13];
 command[5] = '\0';
}*/
/* Transmit the command 5 times or as long as it fails. */

B6
Appendix B Included Files

j = 0;
Begintransaction("tms");
do {
 if (j++ == 5) exit(0);
 Kxmit(command, K_ENTER);
} while (Mrcv("t: *0^[[17;51H", PROMPT, "% ", "") != 0);
Endtransaction("tms");

vt220.h
/*--*/
/* */
/* NAME */
/* vt220.h */
/* */
/* DESCRIPTION */
/* Define keystrokes used when accessing */
/* CEFMS via Vistacom. */
/* */
/*--*/

/* Miscellaneous Keys */

#define K_HOME "^[[1~" /* VT220 Home */
#define K_INSER "^[[2~" /* VT220, CEFMS Insert/Replace

*/
#define K_DELETE "^[[3~" /* VT220, CEFMS Delete

Character */
#define K_END "^[[4~" /* VT220 End */
#define K_PAGE_UP "^[[5~" /* VT220 Page Up */
#define K_PAGE_DOWN "^[[6~" /* VT220 Page Down */
#define K_UP "^[[A" /* VT220, CEFMS Move Up */
#define K_DOWN "^[[B" /* VT220, CEFMS Move Down */
#define K_RIGHT "^[[C" /* VT220, CEFMS Move Right */
#define K_LEFT "^[[D" /* VT220, CEFMS Move Left */

/* Control Key Sequences */

#define K_QUIT "^|" /* UNIX QUIT (Term Proc & Dump
Core) */

#define K_CTRL_A "^A" /* CEFMS Insert/Replace */
#define K_CTRL_B "^B" /* CEFMS Beginning of Line */
#define K_INTR "^C" /* UNIX INTR (Terminate

Process) */
#define K_EOF "^D" /* UNIX EOF, CEFMS Delete

Character */
#define K_CTRL_E "^E" /* Unknown Purpose K_CTRL_E */
#define K_CTRL_F "^F" /* CEFMS Duplicate Field */
#define K_CTRL_G "^G" /* Unknown Purpose K_CTRL_G */
#define K_ERASE "^H" /* UNIX ERASE, CEFMS Delete

Backward */
#define K_TAB "^I" /* UNIX Tab, CEFMS Next Field

*/
#define K_CTRL_J "^J" /* UNIX Line Feed */
#define K_CTRL_K "^K" /* CEFMS Next Primary Key Field

*/
#define K_CTRL_L "^L" /* CEFMS Redisplay Page */
#define K_ENTER "^M"
#define K_CTRL_N "^N" /* Unknown Purpose K_CTRL_N */
#define K_DISCARD "^O" /* UNIX DISCARD (Discard

Output) */
#define K_CTRL_P "^P" /* Unknown Purpose K_CTRL_P */
#define K_START "^Q" /* UNIX START (Resume Output)

*/

Appendix B Included Files B7

#define K_REPRINT "^R" /* UNIX REPRINT, CEFMS
Redisplay Page */

#define K_STOP "^S" /* UNIX STOP (Suspend Output)
*/

#define K_CTRL_T "^T" /* Unknown Purpose K_CTRL_T */
#define K_KILL "^U" /* UNIX KILL (Delete Line) */
#define K_LNEXT "^V" /* UNIX LNEXT (Ignore Spec Next

Char)*/
#define K_WERASE "^W" /* UNIX WERASE (Word Erase) */
#define K_CTRL_X "^X" /* Unknown Purpose K_CTRL_X */
#define K_DSUSP "^Y" /* UNIX DSUSP (Delayed Susp FG

Proc) */
#define K_SUSP "^Z" /* UNIX SUSP (Suspend

Foreground Proc)*/
#define K_CTRL_RIGHT "^[OP^[[C" /* CEFMS Scroll Right */
#define K_CTRL_LEFT "^[OP^[[D" /* CEFMS Scroll Left */

/* Control Function Key Sequences */

#define K_CTRL_F1 "^[1" /* Unknown Purpose K_CTRL_F1 */
#define K_CTRL_F2 "^[2" /* Unknown Purpose K_CTRL_F2 */
#define K_CTRL_F3 "^[3" /* Unknown Purpose K_CTRL_F3 */
#define K_CTRL_F4 "^[4" /* Unknown Purpose K_CTRL_F4 */
#define K_CTRL_F5 "^[5" /* Unknown Purpose K_CTRL_F5 */
#define K_CTRL_F6 "^[6" /* Unknown Purpose K_CTRL_F6 */
#define K_CTRL_F7 "^[7" /* Unknown Purpose K_CTRL_F7 */
#define K_CTRL_F8 "^[8" /* Unknown Purpose K_CTRL_F8 */
#define K_CTRL_F9 "^[9" /* Unknown Purpose K_CTRL_F9 */
#define K_CTRL_F10 "^[0" /* Unknown Purpose K_CTRL_F10

*/
#define K_CTRL_F11 "^[!" /* Unknown Purpose K_CTRL_F11

*/
#define K_CTRL_F12 "^[@" /* Unknown Purpose K_CTRL_F12

*/

/* Escape Key Sequences */

#define K_ESC_POUND "^[#" /* CEFMS Count Query Hits */
#define K_ESC_R "^[r" /* CEFMS Clear Record */
#define K_ESC_TAB "^[^I" /* CEFMS Previous Field */
#define K_ESC_ENTER "^[^M" /* CEFMS Previous Field */
#define K_ESC_LEFT "^[^[[D" /* CEFMS Beginning of Line */
#define K_ESC "^[" /* VT220 Escape */

/* Function Key Sequences */

#define K_F1 "^[OP" /* CEFMS Help */
#define K_F2 "^[OQ" /* CEFMS Enter Query */
#define K_F3 "^[OR" /* CEFMS Execute Query */
#define K_F4 "^[OS" /* CEFMS List Field Values */
#define K_F5 "" /* CEFMS Clear Record */
#define K_F6 "^[[17~" /* CEFMS Clear Field */
#define K_F7 "^[[18~" /* Unknown Purpose K_F7 */
#define K_F8 "^[[19~" /* CEFMS Show Function Keys */
#define K_F9 "^[[20~" /* Unknown Purpose K_F9 */
#define K_F10 "^[[21~" /* CEFMS Exit or Previous

Screen */

/* Shift Key Sequences */

#define K_SHIFT_F1 "^[[23~" /* CEFMS Count Query Hits */
#define K_SHIFT_F2 "^[[24~" /* Unknown Purpose K_SHIFT_F2

*/
#define K_SHIFT_F3 "^[[25~" /* Unknown Purpose K_SHIFT_F3

*/
#define K_SHIFT_F4 "^[[26~" /* Unknown Purpose K_SHIFT_F4

*/

B8
Appendix B Included Files

#define K_SHIFT_F5 "^[[28~" /* Unknown Purpose K_SHIFT_F5
*/

#define K_SHIFT_F6 "^[[29~" /* Unknown Purpose K_SHIFT_F6
*/

#define K_SHIFT_F7 "^[[31~" /* CEFMS Duplicate Field */
#define K_SHIFT_F8 "^[[32~" /* CEFMS Redisplay Page */
#define K_SHIFT_F9 "^[[33~" /* CEFMS Print */
#define K_SHIFT_F10 "^[[34~" /* CEFMS Display Error */
#define K_SHIFT_TAB "^[[Z" /* CEFMS Previous Field */

Appendix C System Configurations C1

Appendix C
System Configurations

RTE Computer System: wescs2.wes.army.mil

System manufacturer Sun Microsystems

System model Ultra Enterprise 3000

System architecture Symmetric shared-memory multiprocessor with
processors and memory interconnected using a
crossbar switch

Processor architecture UltraSPARC (9-stage pipeline, superscalar)

Clock rate / cycle time 167 MHz / 6 nanoseconds

Number of processors 4 (out of a possible 6)

Cache per processor Primary instruction cache: 16 Kbytes (on-chip)
 Primary data cache: 16 Kbytes (on-chip)
 Secondary cache: 1 Mbyte (off-chip)

Memory size 320 Mbytes (out of a possible 6 Gbytes)

Peripheral interface 20-Mbyte/sec fast/wide SCSI-2

Network interface 10-Mbyte/sec Ethernet

Operating system SunOS Release 5.5.1 Version Generic_103640-03
 (UNIX® System V Release 4.0)

RTE software PurePerformix/TTY 3.2.2

C2
Appendix C System Configurations

SUT Computer System: cpc25.usace.army.mil

System manufacturer Sun Microsystems

System model Ultra Enterprise 6000

System architecture Symmetric shared-memory multiprocessor with
processors and memory interconnected using a
crossbar switch

Processor architecture UltraSPARC (9-stage pipeline, superscalar)

Clock rate / cycle time 167 MHz / 6 nanoseconds

Number of processors 24 (out of a possible 30)

Cache per processor Primary instruction cache: 16 Kbytes (on-chip)
Primary data cache: 16 Kbytes (on-chip)
Secondary cache: 1 Mbyte (off-chip)

Memory size 5120 Mbytes (out of a possible 30 Gbytes)

Peripheral interface 20-Mbyte/sec fast/wide SCSI-2

Mass storage See below.

Network interface 10-Mbyte/sec Ethernet

Operating system SunOS Release 5.5.1 Version Generic_103640-08
(UNIX® System V Release 4.0)

Database system Oracle Version 7.2.3, CEFMS as of 31 July 1996.

SUT Disks and Database Layout

For these BTs, the Oracle database U4CEFMP1 resided on Sun Model 102
SparcStorage Arrays. An SSA is a separate SCSI disk expansion unit that has
three drive trays, with each tray holding 10 half-height, single-connector 3.5-in.
Disk drives (a total of 30 drives). Each SSA disk drive operates with a spin rate
of 7,200 rpm. Each SSA is linked to the SUT through fiber-optic cables. These
cables connect to a Fiber Channel Optical Module (PC/OM) mounted on a Fiber
Channel Sbus (FC/S) card on the host side and to an PC/OM mounted on the
array controller on the SSA side. At the benckmark site, SSAs are associated
with a single host. Graphical User Interface (GUI) software provided by Veritas
through Sun allows the configuration management of the SSAs.

Appendix C System Configurations C3

Tables C1 and C2 provide detailed information on location of database files
and disk drive characteristics. The characteristics of the unmirrored, striped
drives were the same as those for the mirrored, striped drives. The user home
directories were on unmirrored, unstriped drives that were UFS formatted.

Table C1
Arrangement of U4CEFMP1 Database Files
File Partition Status

cefms.df1 /cpc25.d22 mirrored
cefms.df2 /cpc25.d25 mirrored
cefms.df3 /cpc25.d72 not mirrored

cefms_ndx.df1 /cpc25.d39 mirrored
cefms_ndx.df1 /cpc25.d39 mirrored

cemis.df1 /cpc25.d22 mirrored

control01.ctl /cpc25.d33 mirrored
control02.ctl /cpc25.d49 mirrored
control03.ctl /cpc25.d37 mirrored

redo01_a.log /cpc25.d48 mirrored
redo01_b.log /cpc25.d54 mirrored
redo01_c.log /cpc25.d21 mirrored
redo02_a.log /cpc25.d21 mirrored
redo02_b.log /cpc25.d48 mirrored
redo02_c.log /cpc25.d54 mirrored
redo03_a.log /cpc25.d54 mirrored
redo03_b.log /cpc25.d21 mirrored
redo03_c.log /cpc25.d48 mirrored

rollspace.df1 /cpc25.d22 mirrored
system01.dbf /cpc25.d22 mirrored
tempspace.df1 /cpc25.d48 mirrored
tools01.dbf /cpc25.d33 mirrored
users01.dbf /cpc25.d33 mirrored
vims.df1 /cpc25.d54 mirrored
wesreport.df1 /cpc25.d54 mirrored

Table C2
Description of Mirrored Drives
Feature Status

Fielsystem available space 3,891,384 Kbytes

Filesystem type UFS

Physical drive type ST32550W SUN2, 1G, Rev. 0418

Fast write enabled yes

Mirrored yes

Physical drives per primary striped plex 2

Physical drives per mirror striped plex 2

Disk block size 512 bytes

Blocks per physical drive 4194995

Striped unit size 80

Read policy based on plex layout

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Technical Report ITL-99-2

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

June 1999 Final report

Performance Testing of CEFMS

William A. Ward, Jr.

Faculty Court West 20
School of Computer and Information Sciences
University of South Alabama
Mobile, Alabama 36688

U.S. Army Corps of Engineers, Washington, DC 20314-1000;
U.S. Army Engineer Waterways Experiment Station, 3909 Halls Ferry Road,
Vicksburg, MS 39180-6199

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

Approved for public release; distribution is unlimited.

Benchmarking
Computer system performance evaluation
Corps of Engineers Financial Management System (CEFMS)
Remote terminal emulation

93

UNCLASSIFIED UNCLASSIFIED

This report describes a series of benchmark tests of the Corps of Engineers Financial Management System (CEFMS).
CEFMS is an interactive software system based on the Oracle relational database management sytem. Remote terminal
emulation was used to conduct the tests. CEFMS was installed on a Sun SPARCserver 6000, and its performance in running
a series of transactions was observed. The report provides a description of how the test workload was formulated and how the
benchmark was prepared, as well as a discussion of the results.

Destroy this report when no longer needed. Do not return it to the originator.

